纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | TPR |
Uniprot No | P12270 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-2363aa |
氨基酸序列 | MAAVLQQVLERTELNKLPKSVQNKLEKFLADQQSEIDGLKGRHEKFKVESEQQYFEIEKRLSHSQERLVNETRECQSLRLELEKLNNQLKALTEKNKELEIAQDRNIAIQSQFTRTKEELEAEKRDLIRTNERLSQELEYLTEDVKRLNEKLKESNTTKGELQLKLDELQASDVSVKYREKRLEQEKELLHSQNTWLNTELKTKTDELLALGREKGNEILELKCNLENKKEEVSRLEEQMNGLKTSNEHLQKHVEDLLTKLKEAKEQQASMEEKFHNELNAHIKLSNLYKSAADDSEAKSNELTRAVEELHKLLKEAGEANKAIQDHLLEVEQSKDQMEKEMLEKIGRLEKELENANDLLSATKRKGAILSEEELAAMSPTAAAVAKIVKPGMKLTELYNAYVETQDQLLLEKLENKRINKYLDEIVKEVEAKAPILKRQREEYERAQKAVASLSVKLEQAMKEIQRLQEDTDKANKQSSVLERDNRRMEIQVKDLSQQIRVLLMELEEARGNHVIRDEEVSSADISSSSEVISQHLVSYRNIEELQQQNQRLLVALRELGETREREEQETTSSKITELQLKLESALTELEQLRKSRQHQMQLVDSIVRQRDMYRILLSQTTGVAIPLHASSLDDVSLASTPKRPSTSQTVSTPAPVPVIESTEAIEAKAALKQLQEIFENYKKEKAENEKIQNEQLEKLQEQVTDLRSQNTKISTQLDFASKRYEMLQDNVEGYRREITSLHERNQKLTATTQKQEQIINTMTQDLRGANEKLAVAEVRAENLKKEKEMLKLSEVRLSQQRESLLAEQRGQNLLLTNLQTIQGILERSETETKQRLSSQIEKLEHEISHLKKKLENEVEQRHTLTRNLDVQLLDTKRQLDTETNLHLNTKELLKNAQKEIATLKQHLSNMEVQVASQSSQRTGKGQPSNKEDVDDLVSQLRQTEEQVNDLKERLKTSTSNVEQYQAMVTSLEESLNKEKQVTEEVRKNIEVRLKESAEFQTQLEKKLMEVEKEKQELQDDKRRAIESMEQQLSELKKTLSSVQNEVQEALQRASTALSNEQQARRDCQEQAKIAVEAQNKYERELMLHAADVEALQAAKEQVSKMASVRQHLEETTQKAESQLLECKASWEERERMLKDEVSKCVCRCEDLEKQNRLLHDQIEKLSDKVVASVKEGVQGPLNVSLSEEGKSQEQILEILRFIRREKEIAETRFEVAQVESLRYRQRVELLERELQELQDSLNAEREKVQVTAKTMAQHEELMKKTETMNVVMETNKMLREEKERLEQDLQQMQAKVRKLELDILPLQEANAELSEKSGMLQAEKKLLEEDVKRWKARNQHLVSQQKDPDTEEYRKLLSEKEVHTKRIQQLTEEIGRLKAEIARSNASLTNNQNLIQSLKEDLNKVRTEKETIQKDLDAKIIDIQEKVKTITQVKKIGRRYKTQYEELKAQQDKVMETSAQSSGDHQEQHVSVQEMQELKETLNQAETKSKSLESQVENLQKTLSEKETEARNLQEQTVQLQSELSRLRQDLQDRTTQEEQLRQQITEKEEKTRKAIVAAKSKIAHLAGVKDQLTKENEELKQRNGALDQQKDELDVRITALKSQYEGRISRLERELREHQERHLEQRDEPQEPSNKVPEQQRQITLKTTPASGERGIASTSDPPTANIKPTPVVSTPSKVTAAAMAGNKSTPRASIRPMVTPATVTNPTTTPTATVMPTTQVESQEAMQSEGPVEHVPVFGSTSGSVRSTSPNVQPSISQPILTVQQQTQATAFVQPTQQSHPQIEPANQELSSNIVEVVQSSPVERPSTSTAVFGTVSATPSSSLPKRTREEEEDSTIEASDQVSDDTVEMPLPKKLKSVTPVGTEEEVMAEESTDGEVETQVYNQDSQDSIGEGVTQGDYTPMEDSEETSQSLQIDLGPLQSDQQTTTSSQDGQGKGDDVIVIDSDDEEEDDDENDGEHEDYEEDEEDDDDDEDDTGMGDEGEDSNEGTGSADGNDGYEADDAEGGDGTDPGTETEESMGGGEGNHRAADSQNSGEGNTGAAESSFSQEVSREQQPSSASERQAPRAPQSPRRPPHPLPPRLTIHAPPQELGPPVQRIQMTRRQSVGRGLQLTPGIGGMQQHFFDDEDRTVPSTPTLVVPHRTDGFAEAIHSPQVAGVPRFRFGPPEDMPQTSSSHSDLGQLASQGGLGMYETPLFLAHEEESGGRSVPTTPLQVAAPVTVFTESTTSDASEHASQSVPMVTTSTGTLSTTNETATGDDGDEVFVEAESEGISSEAGLEIDSQQEEEPVQASDESDLPSTSQDPPSSSSVDTSSSQPKPFRRVRLQTTLRQGVRGRQFNRQRGVSHAMGGRGGINRGNIN |
预测分子量 | 267 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于TPR重组蛋白的3篇参考文献示例(注:文献为虚构,仅供格式参考):
---
1. **文献名称**: *Modular Design of TPR Recombinant Proteins for Targeted Protein-Protein Interactions*
**作者**: Allan, R.K., et al.
**摘要**: 本研究利用TPR(四肽重复)结构域的模块化特性,设计并表达了一系列重组TPR蛋白。通过结构分析和体外结合实验,验证了其特异性结合HSP90等伴侣蛋白的能力,为开发基于TPR的蛋白相互作用调控工具提供理论基础。
---
2. **文献名称**: *Engineering Thermostable TPR Recombinant Proteins for Anticancer Drug Delivery*
**作者**: Chen, L., & Zhang, Y.
**摘要**: 作者通过理性设计改造TPR重组蛋白的疏水核心,显著提高了其热稳定性(Tm值提升15℃)。改造后的蛋白在体外成功靶向癌细胞表面的异常伴侣蛋白,并在小鼠模型中展现出增强的抗肿瘤药物递送效率。
---
3. **文献名称**: *High-Yield Production of TPR Recombinant Proteins in E. coli: Optimization and Functional Characterization*
**作者**: Brown, T., et al.
**摘要**: 报道了一种在大肠杆菌中高效表达TPR重组蛋白的方法,通过密码子优化和融合标签筛选,使产量达到20 mg/L。纯化蛋白经圆二色谱和SPR分析证实其正确折叠及与靶蛋白的纳摩尔级亲和力。
---
**注**:以上文献为模拟内容,实际研究中建议通过PubMed或Web of Science以关键词“TPR domain recombinant protein”检索真实文献。
Tetratricopeptide repeat (TPR) recombination proteins are synthetic or engineered proteins designed by rearranging or combining TPR motifs, a naturally occurring structural domain found in many proteins. TPR motifs are short, degenerate sequences of ~34 amino acids that form helix-turn-helix structures, typically arranged in tandem repeats. These repeats stack to create a superhelical scaffold with a conserved groove, enabling interactions with partner proteins or peptides. Naturally, TPR-containing proteins participate in diverse cellular processes, including chaperone activity, signal transduction, and cell cycle regulation, by mediating protein-protein interactions.
The concept of TPR recombination emerged from advances in protein engineering and synthetic biology. Researchers exploit the modularity and adaptability of TPR motifs to design custom proteins with tailored binding properties. By rearranging the number, order, or sequence of TPR repeats, scientists can create chimeric proteins that bind specific targets, such as disease-related peptides or signaling molecules. This approach leverages the TPR domain’s intrinsic stability and structural predictability, making it an attractive scaffold for biomedical applications.
TPR recombinant proteins have shown promise in therapeutic development, particularly for inhibiting protein-protein interactions implicated in cancer, neurodegenerative diseases, and viral infections. For example, engineered TPR proteins can block pathogenic interactions by mimicking natural binding partners or acting as competitive inhibitors. Additionally, their modular design allows fusion with functional domains (e.g., fluorescent tags or enzymes) for diagnostic or catalytic purposes.
Challenges include optimizing specificity, stability, and production yields, but ongoing innovations in computational modeling and directed evolution are addressing these limitations. TPR recombination exemplifies the fusion of structural biology and bioengineering, offering a versatile platform for creating functional proteins with applications in medicine, biotechnology, and synthetic biology.
×