纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | zwf |
Uniprot No | P0AC53 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-486aa |
氨基酸序列 | MAVTQTAQACDLVIFGAKGDLARRKLLPSLYQLEKAGQLNPDTRIIGVGRADWDKAAYTKVVREALETFMKETIDEGLWDTLSARLDFCNLDVNDTAAFSRLGAMLDQKNRITINYFAMPPSTFGAICKGLGEAKLNAKPARVVMEKPLGTSLATSQEINDQVGEYFEECQVYRIDHYLGKETVLNLLALRFANSLFVNNWDNRTIDHVEITVAEEVGIEGRWGYFDKAGQMRDMIQNHLLQILCMIAMSPPSDLSADSIRDEKVKVLKSLRRIDRSNVREKTVRGQYTAGFAQGKKVPGYLEEEGANKSSNTETFVAIRVDIDNWRWAGVPFYLRTGKRLPTKCSEVVVYFKTPELNLFKESWQDLPQNKLTIRLQPDEGVDIQVLNKVPGLDHKHNLQITKLDLSYSETFNQTHLADAYERLLLETMRGIQALFVRRDEVEEAWKWVDSITEAWAMDNDAPKPYQAGTWGPVASVAMITRDGRS |
预测分子量 | 82.0 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于ZWF重组蛋白(葡萄糖-6-磷酸脱氢酶,Zwf)的参考文献示例,内容基于学术研究的典型方向,仅供参考:
---
1. **文献名称**:*Cloning and overexpression of the zwf gene encoding glucose-6-phosphate dehydrogenase from Escherichia coli*
**作者**:Sugimoto, S., & Shiio, I.
**摘要**:本研究报道了大肠杆菌中编码葡萄糖-6-磷酸脱氢酶(Zwf)的基因克隆及高效表达。通过构建重组质粒并在宿主菌中过表达,酶活显著提高,为后续研究Zwf的酶学性质及工业应用提供了基础。
2. **文献名称**:*Enzymatic characterization of recombinant glucose-6-phosphate dehydrogenase from Bacillus subtilis: Role in NADPH generation*
**作者**:Büttner, M.J., et al.
**摘要**:研究通过重组表达枯草芽孢杆菌Zwf蛋白,分析其最适反应温度、pH及动力学参数。发现该酶在NADPH再生系统中具有高效催化活性,为代谢工程中辅因子调控提供了理论支持。
3. **文献名称**:*Enhanced production of NADPH by recombinant Zwf in engineered Saccharomyces cerevisiae*
**作者**:Chang, H.N., et al.
**摘要**:通过将大肠杆菌来源的Zwf基因导入酿酒酵母,优化发酵条件后,NADPH产量显著提升。该研究为利用重组Zwf改善细胞工厂的还原力供应提供了可行策略。
4. **文献名称**:*Metabolic engineering of Pseudomonas putida through zwf overexpression for improved biosynthesis of polyhydroxyalkanoates*
**作者**:Zhang, Y., et al.
**摘要**:过表达重组Zwf增强了恶臭假单胞菌的NADPH水平,显著提高了聚羟基脂肪酸酯(PHA)的合成效率,证实了Zwf在代谢流调控中的关键作用。
---
**注**:以上文献为示例,实际研究需参考具体论文。建议通过PubMed、Web of Science或Google Scholar以关键词“Zwf recombinant protein”“glucose-6-phosphate dehydrogenase expression”检索最新文献。
The zwf gene encodes glucose-6-phosphate dehydrogenase (G6PD), a critical enzyme in the pentose phosphate pathway (PPP) that catalyzes the oxidation of glucose-6-phosphate to 6-phosphogluconolactone, generating NADPH. This reaction is pivotal for maintaining cellular redox balance and providing reducing equivalents for biosynthetic processes. In microbial systems, such as Escherichia coli, Zwf is essential for NADPH-dependent reactions, impacting metabolic flux, stress resistance, and the production of secondary metabolites.
Recombinant Zwf protein is produced via heterologous expression in host systems (e.g., E. coli, yeast) to study its enzymatic properties or enhance industrial applications. Its overexpression has been leveraged in metabolic engineering to optimize NADPH supply for pathways like fatty acid biosynthesis or antibiotic production. Conversely, zwf knockout strains are used to redirect carbon flux in favor of target products, such as ethanol or organic acids.
In biotechnology, recombinant Zwf serves as a tool for understanding PPP regulation and its role in oxidative stress responses. It also has applications in diagnostics, particularly in studying G6PD deficiency, a common human enzymopathy. Structural studies of recombinant Zwf have elucidated mechanisms of substrate binding, catalysis, and allosteric regulation, aiding in enzyme engineering for improved stability or activity.
Recent advances focus on fusion proteins or immobilization techniques to enhance Zwf’s utility in biocatalysis or biosensors. Challenges include balancing its activity with downstream PPP enzymes to avoid metabolic bottlenecks. Overall, recombinant Zwf remains a cornerstone in both basic research and applied microbiology, bridging metabolic insights with bioproduction innovations.
×