纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | pdh |
Uniprot No | P08559 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 31-390aa |
氨基酸序列 | ANDATFEIKK CDLHRLEEGP PVTTVLTRED GLKYYRMMQT VRRMELKADQ LYKQKIIRGF CHLCDGQEAC CVGLEAGINP TDHLITAYRA HGFTFTRGLS VREILAELTG RKGGCAKGKG GSMHMYAKNF YGGNGIVGAQ VPLGAGIALA CKYNGKDEVC LTLYGDGAAN QGQIFEAYNM AALWKLPCIF ICENNRYGMG TSVERAAAST DYYKRGDFIP GLRVDGMDIL CVREATRFAA AYCRSGKGPI LMELQTYRYH GHSMSDPGVS YRTREEIQEV RSKSDPIMLL KDRMVNSNLA SVEELKEIDV EVRKEIEDAA QFATADPEPP LEELGYHIYS SDPPFEVRGA NQWIKFKSVS |
预测分子量 | 43,2 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于PDH重组蛋白研究的参考文献示例(内容为模拟概括,非真实文献):
---
1. **文献名称**: *Heterologous Expression and Structural Analysis of the Pyruvate Dehydrogenase Complex in E. coli*
**作者**: Smith, J.R. et al.
**摘要**: 本研究在大肠杆菌中成功重组表达了丙酮酸脱氢酶复合体(PDH),并通过X射线晶体学解析了其三维结构。结果表明,重组PDH的酶活性与天然酶相似,为后续代谢工程研究提供了基础。
---
2. **文献名称**: *Functional Characterization of Recombinant PDH E1 Subunit for Therapeutic Applications*
**作者**: Johnson, L.M. & Chen, W.
**摘要**: 作者克隆并表达了PDH的E1α亚基,验证了其与硫胺素焦磷酸(TPP)的结合能力,并证明重组蛋白可恢复PDH缺陷型细胞的线粒体功能,为代谢疾病治疗提供潜在策略。
---
3. **文献名称**: *Optimization of PDH Expression in Pichia pastoris for Industrial Biocatalysis*
**作者**: Lee, S. et al.
**摘要**: 在毕赤酵母中优化PDH复合体的表达条件,通过发酵参数调控使酶产量提高5倍。重组PDH在pH 7.0和37°C下稳定性最佳,适用于规模化生产乙酰辅酶A。
---
4. **文献名称**: *Role of Recombinant PDH in Restoring Metabolic Flux in Mitochondrial Disorders*
**作者**: Brown, K. et al.
**摘要**: 通过腺病毒载体在PDH缺陷型小鼠模型中递送重组PDH基因,成功恢复三羧酸循环通量,降低乳酸积累,为线粒体疾病基因治疗提供实验依据。
---
(注:以上文献为模拟示例,实际研究需查阅PubMed、Web of Science等数据库获取真实信息。)
The pyruvate dehydrogenase (PDH) complex is a critical mitochondrial enzyme system that links glycolysis to the tricarboxylic acid (TCA) cycle by catalyzing the oxidative decarboxylation of pyruvate into acetyl-CoA. This multi-enzyme complex comprises three catalytic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3), along with regulatory kinases and phosphatases. Its activity is essential for cellular energy production, and dysfunction is associated with metabolic disorders, neurodegenerative diseases, and cancer.
Recombinant PDH proteins are engineered using genetic cloning techniques to express individual subunits or functional domains in heterologous systems like *E. coli*, yeast, or mammalian cells. This approach enables large-scale production of PDH components for structural, functional, and therapeutic studies. For instance, recombinant E1 and E2 subunits are widely used to investigate PDH deficiency syndromes, characterize mutations, and develop enzyme replacement strategies. Additionally, reconstituted PDH complexes aid in studying allosteric regulation, substrate specificity, and interactions with inhibitors or activators.
In biotechnology, recombinant PDH variants are explored for metabolic engineering to enhance acetyl-CoA flux in microbial systems, supporting biosynthesis of biofuels or value-added chemicals. Challenges persist in achieving proper folding and assembly of the multi-subunit complex *in vitro*, prompting advances in co-expression systems and chaperone-assisted refolding. Recent studies also leverage cryo-EM and X-ray crystallography of recombinant PDH components to resolve mechanistic details, informing drug design for diabetes or cancer therapies targeting metabolic reprogramming. Overall, recombinant PDH proteins serve as indispensable tools bridging basic biochemistry and applied biomedical research.
×