纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | ugl |
Uniprot No | Q9RC92 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-377aa |
氨基酸序列 | MWQQAIGDALGITARNLKKFGDRFPHVSDGSNKYVLNDNTDWTDGFWSGILWLCYEYTGDEQYREGAVRTVASFRERLDRFENLDHHDIGFLYSLSAKAQWIVEKDESARKLALDAADVLMRRWRADAGIIQAWGPKGDPENGGRIIIDCLLNLPLLLWAGEQTGDPEYRRVAEAHALKSRRFLVRGDDSSYHTFYFDPENGNAIRGGTHQGNTDGSTWTRGQAWGIYGFALNSRYLGNADLLETAKRMARHFLARVPEDGVVYWDFEVPQEPSSYRDSSASAITACGLLEIASQLDESDPERQRFIDAAKTTVTALRDGYAERDDGEAEGFIRRGSYHVRGGISPDDYTIWGDYYYLEALLRLERGVTGYWYERGR |
预测分子量 | 42,8 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于UGL(假设为尿酸酶或相关重组蛋白)的模拟参考文献示例,供参考。请注意,这些为示例性内容,实际文献需通过学术数据库查询:
1. **标题**:*Expression and Characterization of Recombinant Urate Oxidase (UGL) in E. coli*
**作者**:Smith A, et al.
**摘要**:研究报道了UGL在大肠杆菌中的高效表达与纯化,通过优化诱导条件获得高活性重组蛋白,为痛风治疗药物的开发提供基础。
2. **标题**:*Structural Analysis of UGL Reveals Substrate Binding Mechanism*
**作者**:Lee H, et al.
**摘要**:通过X射线晶体学解析UGL的三维结构,阐明其催化尿酸降解的分子机制,为酶工程改造提供依据。
3. **标题**:*Application of Recombinant UGL in Hyperuricemia Therapy*
**作者**:Zhang Y, et al.
**摘要**:评估重组UGL在动物模型中的药效学,证实其显著降低血清尿酸水平,具有临床转化潜力。
4. **标题**:*Thermostability Enhancement of UGL via Site-directed Mutagenesis*
**作者**:Gomez P, et al.
**摘要**:通过定点突变提高UGL的热稳定性,优化后的重组酶在工业生产中展现更优性能。
**建议**:实际文献可通过PubMed、Google Scholar等平台以关键词“recombinant urate oxidase”、“UGL protein expression”或结合具体研究领域检索。
UDP-galactopyranose mutase-like (UGL) recombinant proteins are engineered variants derived from a class of enzymes initially identified in microbial and plant systems. These proteins play a pivotal role in carbohydrate metabolism, particularly in modifying sugar moieties essential for cell wall biosynthesis, pathogen virulence, or host-pathogen interactions. The native UGL enzyme catalyzes the isomerization of UDP-galactopyranose to UDP-galactofuranose, a rare but critical sugar form involved in constructing structural polysaccharides and glycoconjugates. This activity is vital for organisms like bacteria, fungi, and plants, where galactofuranose-containing molecules contribute to cell integrity, immune evasion, or symbiotic signaling.
Recombinant UGL proteins are produced via heterologous expression systems (e.g., *E. coli* or yeast) to enable large-scale purification and functional studies. Their engineering often focuses on optimizing stability, catalytic efficiency, or substrate specificity for industrial or therapeutic applications. For instance, modified UGL variants are explored in biofuel production for lignocellulose degradation or in synthesizing glycoconjugate vaccines. Structural studies using recombinant UGLs have revealed conserved catalytic domains and flexible loops governing substrate binding, guiding rational design for biotechnological tools.
Recent interest in UGLs also stems from their potential in targeting microbial glycans. Pathogens like *Mycobacterium tuberculosis* rely on galactofuranose for virulence, making UGL a candidate for antibiotic development. Additionally, plant-derived UGL homologs are studied for roles in stress response and biomass utilization. The adaptability of recombinant UGL technology underscores its cross-disciplinary relevance, bridging enzymology, synthetic biology, and biomedicine while addressing challenges in sustainable chemistry and infectious disease.
×