纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | ssb |
Uniprot No | P05455 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-408aa |
氨基酸序列 | MAENGDNEKMAALEAKICHQIEYYFGDFNLPRDKFLKEQIKLDEGWVPLEIMIKFNRLNRLTTDFNVIVEALSKSKAELMEISEDKTKIRRSPSKPLPEVTDEYKNDVKNRSVYIKGFPTDATLDDIKEWLEDKGQVLNIQMRRTLHKAFKGSIFVVFDSIESAKKFVETPGQKYKETDLLILFKDDYFAKKNEERKQNKVEAKLRAKQEQEAKQKLEEDAEMKSLEEKIGCLLKFSGDLDDQTCREDLHILFSNHGEIKWIDFVRGAKEGIILFKEKAKEALGKAKDANNGNLQLRNKEVTWEVLEGEVEKEALKKIIEDQQESLNKWKSKGRRFKGKGKGNKAAQPGSGKGKVQFQGKKTKFASDDEHDEHDENGATGPVKRAREETDKEEPASKQQKTENGAGDQ |
预测分子量 | 52.9 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4条关于SSB(Single-Stranded DNA Binding Protein)重组蛋白的参考文献及其摘要概括:
---
1. **文献名称**: *SSB as an Organizer/Mobilizer of Genome Maintenance Complexes*
**作者**: Shereda, R.D. et al.
**摘要**: 研究了大肠杆菌SSB蛋白在DNA重组修复中的核心作用,揭示其通过结合单链DNA并招募RecA、核酸酶等重组相关蛋白,促进DNA修复和复制过程的分子机制。
2. **文献名称**: *Structure and Function of the E. coli SSB Protein: A Key Player in DNA Metabolism*
**作者**: Raghunathan, S. et al.
**摘要**: 通过X射线晶体学解析了SSB四聚体结构,阐明其通过寡核苷酸结合折叠域(OB-fold)动态结合单链DNA的机制,并讨论其在复制、重组和修复中的多功能性。
3. **文献名称**: *Thermostable SSB Proteins for Biotechnology: Comparative Analysis of Bacterial and Archaeal Variants*
**作者**: Kazimierczak, J. et al.
**摘要**: 比较了不同来源(如嗜热菌和古菌)重组SSB蛋白的热稳定性及DNA结合能力,提出其在PCR、基因测序等分子生物学技术中的应用潜力。
4. **文献名称**: *Enhancing CRISPR-Cas9 Editing Efficiency via SSB-Mediated DNA Protection*
**作者**: Cox, M.M. et al.
**摘要**: 探讨了SSB重组蛋白在CRISPR-Cas9基因编辑中的作用,证明其通过稳定单链DNA区域减少核酸酶降解,显著提高真核和原核系统的编辑效率。
---
以上文献涵盖SSB的结构功能、重组技术应用及基因编辑优化,可根据研究需求进一步扩展。
Single-stranded DNA-binding proteins (SSBs) are essential molecular guardians in DNA metabolism, playing pivotal roles in replication, repair, and recombination by stabilizing transient single-stranded DNA (ssDNA) intermediates. These proteins prevent ssDNA from degradation, unwanted annealing, or secondary structure formation, ensuring genome integrity. SSBs are characterized by an oligonucleotide/oligosaccharide-binding (OB)-fold domain, which enables sequence-independent ssDNA binding. Bacterial SSBs, such as the well-studied Escherichia coli SSB, function as homotetramers, while eukaryotic homologs like Replication Protein A (RPA) form heterotrimeric complexes with distinct functional domains.
Recombinant SSB proteins are engineered using genetic cloning techniques, where the SSB gene is inserted into expression vectors and produced in host systems like E. coli or yeast. Advanced purification methods, including affinity chromatography and ion-exchange chromatography, yield high-purity proteins for research and applications. Recombinant SSBs retain the native protein's ability to cooperatively bind ssDNA with high affinity, making them indispensable tools in molecular biology.
In research, recombinant SSBs are used to study DNA replication mechanisms, protein-DNA interactions, and repair pathways. They enhance the efficiency of PCR and DNA sequencing by stabilizing ssDNA templates. In biotechnology, SSBs serve as stabilizing agents in CRISPR-Cas9 gene editing and diagnostic assays, where they improve probe hybridization specificity. Additionally, their role in microbial DNA repair has sparked interest in developing antimicrobial agents targeting bacterial SSBs. By bridging fundamental research and applied sciences, recombinant SSB proteins continue to advance our understanding of genome dynamics and enable cutting-edge biotechnological innovations.
×