纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | btuD |
Uniprot No | B0R5G4 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-398aa |
氨基酸序列 | MTLDVTGLDVELAGTRILDDVHASIRDGHLVGVVGPNGAGKSTLLRAMNGLITPTAGTVLVAGDDVHALSSAAASRRIATVPQDASVSFEFTVRQVVEMGRHPHTTRFGTDTDTAVVDRAMARTGVAQFAARDVTSLSGGERQRVLLARALAQAAPVLLLDEPTASLDVNHQIRTLEVVRDLADSEDRAVVAAIHDLDLAARYCDELVVVADGRVHDAGAPRSVLTPDTIRAAFDARVAVGTDPATGAVTVTPLPDRTSAAADTSVHVVGGGDSATPVVRRLVSAGASVSVGPVVEGDTDHETARRVGCPCTSVAPFTRLEDTTAASATRADIAAADVIAVPVAAAARPGVRGLLTGAVPTLAVGDAAGAPEWADRLVACDAVVSAVGALADTPSDGV |
预测分子量 | 40.5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于btuD重组蛋白的3篇参考文献的简要列举:
1. **文献名称**:*Cloning and Expression of the btuD Gene in Escherichia coli for Recombinant Protein Production*
**作者**:Smith A, et al.
**摘要**:研究报道了btuD基因的克隆及在大肠杆菌中的重组表达,优化了表达条件并通过亲和层析纯化获得高纯度蛋白,证实其具备维生素B12结合活性。
2. **文献名称**:*Structural Analysis of the BtuD Subunit in the ABC Transporter Complex*
**作者**:Chen L, Wang H.
**摘要**:通过X射线晶体学解析了重组BtuD蛋白的三维结构,揭示了其ATP结合域的关键构象变化,为理解维生素B12跨膜转运机制提供结构基础。
3. **文献名称**:*Functional Characterization of Recombinant BtuD in Vitamin B12 Uptake*
**作者**:Zhang Y, et al.
**摘要**:利用体外重组BtuD蛋白验证其在ATP依赖的维生素B12转运中的功能,证明其与BtuC协同作用,并揭示能量偶联的关键氨基酸位点。
4. **文献名称**:*Heterologous Expression of btuD in Lactococcus lactis for Biomedical Applications*
**作者**:Kim S, et al.
**摘要**:探索了btuD在乳酸乳球菌中的异源表达,评估重组蛋白在益生菌递送维生素B12的潜在应用,证实其稳定性和生物相容性。
(注:以上文献为示例,实际引用需根据具体研究补充真实来源。)
**Background of BtuD Recombinant Protein**
The BtuD protein is a critical component of the *Escherichia coli* vitamin B12 uptake system, functioning as part of an ATP-binding cassette (ABC) transporter. ABC transporters are ubiquitous membrane proteins that hydrolyze ATP to drive nutrient import or export across cellular membranes. In *E. coli*, BtuD partners with BtuC, a transmembrane protein, to form the BtuCDF complex, which specifically transports vitamin B12 (cobalamin). This process is energy-dependent, relying on BtuD’s ATPase activity to power conformational changes necessary for substrate translocation.
Vitamin B12 is essential for bacterial metabolism, particularly in pathways like methionine synthesis and fatty acid oxidation. However, due to its large size and complex structure, B12 cannot passively diffuse through the membrane, necessitating specialized transporters like BtuD. Studying BtuD’s structure and mechanism provides insights into ABC transporter dynamics and microbial nutrient acquisition.
Recombinant BtuD protein is generated via genetic engineering, often by cloning the *btuD* gene into expression vectors (e.g., pET or pGEX systems) and producing the protein in heterologous hosts like *E. coli*. Purification typically involves affinity chromatography tags (e.g., His-tag) for high yield and purity. Recombinant BtuD retains ATP-binding and hydrolysis activities, enabling *in vitro* studies on its interaction with BtuC, ATPase kinetics, and B12 transport regulation.
Research on BtuD has implications for antimicrobial development, as disrupting B12 uptake could inhibit pathogenic bacteria reliant on this pathway. Additionally, its study contributes to structural biology, elucidating conserved ABC transporter motifs and energy-coupling mechanisms. Recombinant BtuD also serves as a model for engineering synthetic transporters or biosensors. Overall, this protein’s biochemical and biophysical characterization advances both basic science and applied biotechnology.
×