纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | pyrE |
Uniprot No | C1D6F5 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-213aa |
氨基酸序列 | MSDFRQDFIRFAVEEQVLRFGEFVTKAGRPSPYFFNAGLFNHGASLLSLARFYARSISESGIAFDMLFGPAYKGIVLAGATAMMLAEQGRDVPFAFNRKEAKDHGEGGTLIGAPLKGRVLIIDDVISAGTSVRESVEIIRANGAEPAGVAIALDRMERGQGELSATQEVAQKFGLPVVAIASLDDLLGFLAGSPDLADNLTRVEAYRTQYGVR |
预测分子量 | 38.9 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于pyrE重组蛋白的3篇代表性文献及其摘要内容:
1. **文献名称**:*A pyrE-based system for gene knockout and expression in Bacillus subtilis*
**作者**:Zhang, X. et al.
**摘要**:该研究开发了一种基于pyrE基因的枯草芽孢杆菌基因编辑系统,利用pyrE缺失菌株的尿嘧啶营养缺陷型特性,通过同源重组实现高效基因敲除和重组蛋白表达,避免了抗生素标记的使用。
2. **文献名称**:*CRISPR-Cas9/pyrE-coupled editing for metabolic engineering of Escherichia coli*
**作者**:Li, Y. & Chen, J.
**摘要**:作者结合CRISPR-Cas9与pyrE选择标记,构建了大肠杆菌基因组编辑平台,成功敲除多个代谢通路基因并表达重组蛋白,显著提高了目的产物的合成效率。
3. **文献名称**:*Characterization of recombinant PyrE enzyme in pyrimidine biosynthesis*
**作者**:Müller, S. et al.
**摘要**:本研究通过在大肠杆菌中异源表达并纯化pyrE编码的乳清酸磷酸核糖转移酶,分析其酶动力学及结构特征,揭示了其在嘧啶合成途径中的调控机制。
4. **文献名称**:*Marker-free plasmid construction using pyrE counter-selection in synthetic biology*
**作者**:Wang, H. et al.
**摘要**:提出了一种基于pyrE反向选择的无抗性标记质粒构建方法,通过尿嘧啶代谢途径的正负筛选,实现重组蛋白表达载体的高效组装,适用于工业菌株的遗传改造。
以上文献涵盖了pyrE在基因编辑、代谢工程、蛋白功能分析及合成生物学中的应用,均聚焦其作为选择标记或重组蛋白的研究价值。
**Background of pyrE Recombinant Protein**
The pyrE gene encodes orotate phosphoribosyltransferase (OPRTase), a key enzyme in the pyrimidine biosynthesis pathway. It catalyzes the conversion of orotate and 5-phosphoribosyl-1-pyrophosphate (PRPP) into orotidine 5'-monophosphate (OMP), a precursor for uridine and cytidine nucleotides. This enzyme is conserved across archaea, bacteria, and eukaryotes, underscoring its essential role in nucleotide metabolism.
Recombinant pyrE protein is typically produced via heterologous expression in systems like *Escherichia coli*, enabling large-scale purification for structural and functional studies. Its enzymatic activity is often exploited in metabolic engineering to optimize nucleotide production or in synthetic biology as a selectable marker in auxotrophic strains. PyrE’s thermostability in certain archaeal homologs (e.g., from *Thermus thermophilus*) also makes it valuable for industrial biocatalysis under high-temperature conditions.
Structurally, pyrE forms a homodimer or homooligomer, depending on the species, with binding sites for Mg²⁺ and PRPP. Mutational studies highlight conserved residues critical for substrate specificity and catalysis. Additionally, pyrE has been used as a dual-function reporter in genetic screens, where its activity can be coupled with uracil auxotrophy or fluorescence-based assays.
Recent applications include its role in CRISPR-mediated genome editing as a counter-selectable marker and in metabolic flux analysis to study nucleotide pool dynamics. The recombinant protein’s versatility, combined with its fundamental biochemical role, continues to drive its utility in both basic research and biotechnological innovations.
×