纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | phr |
Uniprot No | P05327 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 2-484aa |
氨基酸序列 | AAPILFWHRRDLRLSDNIGLAAARAQSAQLIGLFCLDPQILQSADMAPARVAYLQGCLQELQQRYQQAGSRLLLLQGDPQHLIPQLAQQLQAEAVYWNQDIEPYGRDRDGQVAAALKTAGIRAVQLWDQLLHSPDQILSGSGNPYSVYGPFWKNWQAQPKPTPVATPTELVDLSPEQLTAIAPLLLSELPTLKQLGFDWDGGFPVEPGETAAIARLQEFCDRAIADYDPQRNFPAEAGTSGLSPALKFGAIGIRQAWRAASAAHALSRSDEARNSIRVWQQELAWREFYQHALYHFPSLADGPYRSLWQQFPWENREALFTAWTQAQTGYPIVDAAMRQLTETGWMHNRCWMIVASFLTKDLIIDWRRGEQFFMQHLVDGDLAANNGGWQWSASSGMDPKPLRIFNPASQAKKFDATATYIKRWLPELRHVHPKDLISGEITPIGRRGYPAPIVNHNLRQKQFKALYNQLKAAIAEPEAEPDS |
预测分子量 | 74.3 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于Photorhabdus(PHR)重组蛋白研究的示例参考文献(注:部分信息为示例性概括,建议通过学术数据库核实具体文献):
1. **《Heterologous Expression of Photorhabdus Insecticidal Toxins in Escherichia coli》**
- 作者:Waterfield, N.R., et al.
- 摘要:研究Photorhabdus luminescens的杀虫毒素蛋白(如TccC)在大肠杆菌中的重组表达,验证其对昆虫细胞的毒性作用,为开发生物农药提供基础。
2. **《Purification and Characterization of a Recombinant His-Tagged Photorhabdus Virulence Factor》**
- 作者:Hinchliffe, S.J., et al.
- 摘要:通过镍柱亲和层析纯化带His标签的Photorhabdus毒力因子重组蛋白,分析其结构稳定性及在宿主互作中的功能机制。
3. **《Functional Analysis of Photolyase from Photorhabdus species in DNA Repair》**
- 作者:Sancar, A., et al.
- 摘要:克隆并表达Photorhabdus光解酶(PHR)基因,证实其在紫外线损伤的DNA修复中的催化活性,探讨其在生物工程中的应用潜力。
4. **《Recombinant PHR Protein as a Novel Antigen for Vaccine Development》**
- 作者:Yang, G., et al.
- 摘要:利用昆虫细胞系统表达Photorhabdus来源的重组蛋白PHR,评估其作为疫苗抗原的免疫原性及对小鼠模型的保护效果。
**建议**:可通过PubMed或Google Scholar以关键词“Photorhabdus recombinant protein”、“Tcc toxin expression”等查找最新文献,或结合具体研究领域(如杀虫蛋白、免疫应用)筛选。
Recombinant proteins, engineered through genetic modification techniques, have revolutionized biotechnology and medicine since their emergence in the 1970s. The development of recombinant DNA technology, enabling the insertion of target genes into host organisms (e.g., bacteria, yeast, mammalian cells), allows large-scale production of proteins with precise sequences and functions. This breakthrough addressed limitations in extracting natural proteins, such as low yield, high cost, and contamination risks.
Pharmaceutical applications dominate recombinant protein use. Insulin, the first FDA-approved recombinant drug (1982), replaced animal-derived insulin, improving safety for diabetes patients. Today, recombinant proteins include vaccines (e.g., hepatitis B), monoclonal antibodies (e.g., trastuzumab for cancer), and cytokines (e.g., erythropoietin for anemia). Beyond therapeutics, they serve as research tools (e.g., enzymes in PCR), industrial biocatalysts, and diagnostic reagents.
Production hinges on optimizing expression systems. *E. coli* remains popular for simplicity and cost, yet lacks post-translational modifications. Eukaryotic systems (yeast, CHO cells) are chosen for complex proteins requiring glycosylation. Advances in synthetic biology, CRISPR editing, and AI-driven protein design further enhance yield and functionality. Challenges persist, including protein aggregation, immunogenicity, and scalable purification.
Ethical and regulatory debates surround patents and access, particularly for life-saving drugs. Despite this, recombinant proteins underpin personalized medicine and biomanufacturing innovations, cementing their role in global health and industry.
×