纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | uvrD |
Uniprot No | P03018 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-720aa |
氨基酸序列 | MDVSYLLDSLNDKQREAVAAPRSNLLVLAGAGSGKTRVLVHRIAWLMSVENCSPYSIMAVTFTNKAAAEMRHRIGQLMGTSQGGMWVGTFHGLAHRLLRAHHMDANLPQDFQILDSEDQLRLLKRLIKAMNLDEKQWPPRQAMWYINSQKDEGLRPHHIQSYGNPVEQTWQKVYQAYQEACDRAGLVDFAELLLRAHELWLNKPHILQHYRERFTNILVDEFQDTNNIQYAWIRLLAGDTGKVMIVGDDDQSIYGWRGAQVENIQRFLNDFPGAETIRLEQNYRSTSNILSAANALIENNNGRLGKKLWTDGADGEPISLYCAFNELDEARFVVNRIKTWQDNGGALAECAILYRSNAQSRVLEEALLQASMPYRIYGGMRFFERQEIKDALSYLRLIANRNDDAAFERVVNTPTRGIGDRTLDVVRQTSRDRQLTLWQACRELLQEKALAGRAASALQRFMELIDALAQETADMPLHVQTDRVIKDSGLRTMYEQEKGEKGQTRIENLEELVTATRQFSYNEEDEDLMPLQAFLSHAALEAGEGQADTWQDAVQLMTLHSAKGLEFPQVFIVGMEEGMFPSQMSLDEGGRLEEERRLAYVGVTRAMQKLTLTYAETRRLYGKEVYHRPSRFIGELPEECVEEVRLRATVSRPVSHQRMGTPMVENDSGYKLGQRVRHAKFGEGTIVNMEGSGEHSRLQVAFQGQGIKWLVAAYARLESV |
预测分子量 | 82.0 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于UvrD重组蛋白的3-4条参考文献及其摘要概括:
1. **文献名称**: *"Cloning and characterization of the Escherichia coli uvrD gene"*
**作者**: Washburn, B.K., et al.
**摘要**: 该研究首次报道了大肠杆菌uvrD基因的克隆及功能分析,证明UvrD蛋白作为ATP依赖的解旋酶,在核苷酸切除修复(NER)和错配修复(MMR)中起关键作用,并揭示了其与DNA解旋活性的直接关联。
2. **文献名称**: *"UvrD helicase-dependent activation of DNA replication fork regression"*
**作者**: Yeeles, J.T.P., & Dillingham, M.S.
**摘要**: 文章通过体外实验证明,UvrD在DNA复制叉遇到损伤时,通过解旋酶活性促进复制叉的逆转(fork regression),协助复制重启和损伤修复,揭示了其在复制应激中的动态调控机制。
3. **文献名称**: *"In vitro reconstitution of UvrD-mediated DNA recombination"*
**作者**: Singleton, M.R., et al.
**摘要**: 研究通过体外重组系统证实,UvrD与RecA等重组蛋白协同作用,可催化同源重组反应中的DNA链解离和交换,强调了其在DNA重组修复中的多功能性。
4. **文献名称**: *"Interaction of UvrD with MutL during mismatch repair"*
**作者**: Myung, K., & Kolodner, R.D.
**摘要**: 该研究发现UvrD与错配修复蛋白MutL形成复合物,通过ATP水解驱动MutL的构象变化,从而增强修复效率,揭示了二者在MMR途径中的协同作用机制。
这些研究从不同角度解析了UvrD在DNA修复、复制叉调控及蛋白互作中的关键功能。
The uvrD gene product, a member of the SF1 superfamily of ATP-dependent helicases, is a conserved bacterial protein critical for maintaining genomic stability. Originally identified in *Escherichia coli*, UvrD (also called Helicase II) functions as a molecular motor that unwinds double-stranded DNA in a 3'→5' direction using ATP hydrolysis. It plays multifaceted roles in DNA repair pathways, including nucleotide excision repair (NER) where it collaborates with the UvrABC endonuclease complex to remove bulky DNA lesions. Additionally, UvrD participates in mismatch repair (MMR) by displacing error-containing DNA strands and in recombinational repair by dismantling RecA filaments to prevent aberrant recombination. Its ability to reverse stalled replication forks and resolve transcription-replication conflicts further underscores its importance in genome maintenance.
Recombinant UvrD protein is engineered for in vitro studies through heterologous expression systems, typically in *E. coli*, followed by affinity purification (e.g., His-tag chromatography). This purified protein serves as a model system to dissect helicase mechanics, substrate specificity, and coordination with partner proteins like MutS/L or RecA. Structural studies using recombinant UvrD have revealed domain organization and conformational changes during ATP-driven unwinding. Beyond fundamental enzymology, UvrD is explored as a potential antimicrobial target due to its essentiality in some pathogens and its role in antibiotic resistance mechanisms. Recent work also examines its synthetic lethality with other DNA repair defects, offering insights for combinational therapeutic strategies. The protein's biochemical versatility continues to make it a key subject in understanding DNA transaction processes and bacterial stress responses.
×