纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | hlgB |
Uniprot No | P0A075 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 26-325aa |
氨基酸序列 | AEGKITPVSVKKVDDKVTLYKTTATADSDKFKISQILTFNFIKDKSYDKD TLVLKATGNINSGFVKPNPNDYDFSKLYWGAKYNVSISSQSNDSVNVVDY APKNQNEEFQVQNTLGYTFGGDISISNGLSGGLNGNTAFSETINYKQESY RTTLSRNTNYKNVGWGVEAHKIMNNGWGPYGRDSFHPTYGNELFLAGRQS SAYAGQNFIAQHQMPLLSRSNFNPEFLSVLSHRQDGAKKSKITVTYQREM DLYQIRWNGFYWAGANYKNFKTRTFKSTYEIDWENHKVKLLDTKETENNK |
预测分子量 | 38 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于hlgB重组蛋白的3篇参考文献及其摘要概括:
---
1. **文献名称**: *"Recombinant expression and functional characterization of Staphylococcus aureus gamma-hemolysin subunit B (hlgB) in Escherichia coli"*
**作者**: Li Y, et al.
**摘要**: 研究通过大肠杆菌系统成功表达并纯化了hlgB重组蛋白,验证其与HlgA协同作用导致红细胞裂解的生物学活性,揭示了hlgB在金黄色葡萄球菌溶血机制中的关键作用。
---
2. **文献名称**: *"Immunogenicity of recombinant hlgB as a potential vaccine candidate against Staphylococcus aureus infections"*
**作者**: Zhang R, et al.
**摘要**: 评估hlgB重组蛋白的免疫保护效果,动物实验表明其能诱导高水平中和抗体,显著降低小鼠模型中金黄色葡萄球菌的致死率和组织定植,提示其作为疫苗靶点的潜力。
---
3. **文献名称**: *"Structural and biophysical analysis of the hlgB subunit from Staphylococcus aureus pore-forming toxin"*
**作者**: Müller L, et al.
**摘要**: 通过X射线晶体学解析hlgB的蛋白结构,结合功能实验阐明其与宿主细胞膜相互作用的分子机制,为针对γ-溶血素的抑制剂设计提供了结构基础。
---
**备注**:以上文献为示例,实际引用时需根据具体数据库(如PubMed、Web of Science)检索最新或权威研究。建议使用关键词“hlgB recombinant protein”或“Staphylococcus aureus gamma-hemolysin subunit B”进一步筛选。
The HLA-G (Human Leukocyte Antigen-G) protein, a non-classical major histocompatibility complex (MHC) class I molecule, plays a critical role in immune tolerance. Unlike classical MHC-I proteins, HLA-G is primarily expressed in immune-privileged tissues, such as the maternal-fetal interface, and is implicated in suppressing immune responses to protect semi-allogeneic fetuses during pregnancy. Its immunosuppressive function extends to pathological contexts, including tumor evasion and organ transplant tolerance, where it inhibits natural killer (NK) cell cytotoxicity, T-cell proliferation, and dendritic cell maturation by binding to inhibitory receptors like LILRB1/2 and KIR2DL4.
Recombinant HLA-G proteins (often termed HLA-G recombinant proteins) are engineered to study these mechanisms or develop therapeutic/diagnostic tools. Typically produced in mammalian expression systems (e.g., HEK293 or CHO cells) to ensure proper post-translational modifications, HLA-G variants—such as soluble HLA-G1 (sHLA-G1) or HLA-G5 isoforms—are generated via gene cloning, expression, and purification. Structural studies focus on its α1/α2 domains for receptor interaction and the unique α3 domain stability.
Research applications include elucidating HLA-G’s role in autoimmune diseases, cancer immunotherapy, and transplant rejection. For instance, HLA-G recombinant proteins are used to block immune checkpoints or as biomarkers for cancer prognosis. However, challenges remain in standardizing isoforms, maintaining conformational stability, and addressing species-specific differences in preclinical models. Recent advances in structural biology and glycoengineering aim to refine its therapeutic potential, positioning HLA-G recombinant proteins as promising tools for immune modulation.
×