纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | tpd |
Uniprot No | P19478 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 20-204aa |
氨基酸序列 | CGGGGEHQHGEEMMAAVPAPDAEGAAGFDEFPIGEDRDVGPLHVGGVYFQPVEMHPAPGAQPSKEEADCHIEADIHANEAGKDLGYGVGDFVPYLRVVAFLQKHGSEKVQKVMFAPMNAGDGPHYGANVKFEEGLGTYKVRFEIAAPSHDEYSLHIDEQTGVSGRFWSEPLVAEWDDFEWKGPQW |
预测分子量 | 27.1 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于靶向蛋白降解(Targeted Protein Degradation, TPD)领域中重组蛋白应用的模拟参考文献示例,供参考:
---
1. **《Design and Application of Bifunctional PROTACs Using Recombinant E3 Ligases》**
*作者:Crews, K.D., Sakamoto, T.*
**摘要**:本研究利用重组表达的E3连接酶(如VHL和CRBN)设计新型PROTAC分子,通过体外重组蛋白筛选验证了其降解靶蛋白的效力,为癌症治疗提供了新策略。
2. **《Recombinant Protein Engineering for Enhanced Targeted Degradation Efficiency》**
*作者:Békés, M., Winter, G.E.*
**摘要**:通过重组蛋白技术优化分子胶降解剂的结合界面,解析了降解复合物的晶体结构,揭示了重组蛋白在TPD分子设计中的关键作用。
3. **《Development of a High-Throughput Screening Platform for TPD Using Recombinant Proteins》**
*作者:Mullard, A., Lu, J.*
**摘要**:构建基于重组靶蛋白和E3连接酶的体外高通量筛选体系,成功筛选出小分子降解剂,加速了TPD药物的早期开发流程。
4. **《Challenges in Recombinant Protein Production for Degrader-Based Therapies》**
*作者:Zhou, P., Craig, R.W.*
**摘要**:探讨重组蛋白表达纯化在TPD应用中的技术难点,提出通过定向进化改善E3连接酶稳定性的方法,以提升降解剂功能。
---
**说明**:以上为模拟参考文献,实际文献需通过PubMed、Web of Science等平台检索确认。建议使用关键词“Targeted Protein Degradation recombinant protein”或结合具体蛋白名称进行精准查询。
**Background of TPD-Based Recombinant Proteins**
Targeted protein degradation (TPD) has emerged as a transformative strategy in drug discovery, leveraging cellular machinery to eliminate disease-causing proteins. Traditional small-molecule inhibitors often require continuous target engagement and struggle with "undruggable" targets, such as non-enzymatic proteins or those lacking defined binding pockets. TPD overcomes these limitations by using bifunctional molecules to recruit E3 ubiquitin ligases, marking specific proteins for proteasomal degradation.
Recombinant proteins play a pivotal role in advancing TPD technologies. For instance, proteolysis-targeting chimeras (PROTACs), a leading TPD approach, rely on recombinant proteins for structural optimization and functional validation. These chimeric molecules combine a target-binding domain (often derived from recombinant antibodies or ligands) with a ligase-recruiting moiety, enabling selective degradation. Recombinant expression systems (e.g., *E. coli*, mammalian cells) are critical for producing functional components of PROTACs, including engineered ubiquitin ligases or target-binding domains with enhanced specificity.
Recent innovations, such as molecular glues and heterobifunctional degraders, further highlight the synergy between recombinant protein engineering and TPD. For example, recombinant crystallographic studies have elucidated degradation mechanisms, while phage display libraries expedite ligand discovery for novel targets. Clinical progress, including PROTACs like ARV-110 (targeting AR in prostate cancer) and ARV-471 (targeting ER in breast cancer), underscores the therapeutic potential.
Challenges remain, such as optimizing pharmacokinetics and minimizing off-target effects. However, the integration of recombinant protein technologies with TPD continues to expand the druggable proteome, offering hope for cancers, neurodegenerative disorders, and infectious diseases. As of 2023. over 20 TPD-based therapies are in clinical trials, marking a paradigm shift in precision medicine.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×