纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | mcr1 |
Uniprot No | A0A0R6L508 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-541aa |
氨基酸序列 | MMQHTSVWYRRSVSPFVLVASVAVFLTATANLTFFDKISQTYPIADNLGFVLTIAVVLFGAMLLITTLLSSYRYVLKPVLILLLIMGAVTSYFTDTYGTVYDTTMLQNALQTDQAETKDLLNAAFIMRIIGLGVLPSLLVAFVKVDYPTWGKGLMRRLGLIVASLALILLPVVAFSSHYASFFRVHKPLRSYVNPIMPIYSVGKLASIEYKKASAPKDTIYHAKDAVQATKPDMRKPRLVVFVVGETARADHVSFNGYERDTFPQLAKIDGVTNFSNVTSCGTSTAYSVPCMFSYLGADEYDVDTAKYQENVLDTLDRLGVSILWRDNNSDSKGVMDKLPKAQFADYKSATNNAICNTNPYNECRDVGMLVGLDDFVAANNGKDMLIMLHQMGNHGPAYFKRYDEKFAKFTPVCEGNELAKCEHQSLINAYDNALLATDDFIAQSIQWLQTHSNAYDVSMLYVSDHGESLGENGVYLHGMPNAFAPKEQRSVPAFFWTDKQTGITPMATDTVLTHDAITPTLLKLFDVTADKVKDRTAFIR |
预测分子量 | 60,1 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于MCR-1重组蛋白的关键文献摘要(文献名称、作者及核心内容概括):
---
1. **文献名称**:*Structural basis for catalytic activation of a phosphoethanolamine transferase associated with colistin resistance*
**作者**:Hu, M., Guo, Y., Liao, X., et al.
**摘要**:本研究通过重组表达MCR-1蛋白并解析其晶体结构(分辨率2.2 Å),揭示了MCR-1催化结构域的锌离子依赖性活性位点,证明其通过磷酸乙醇胺转移机制修饰脂质A,赋予细菌对粘菌素的耐药性。结构分析还表明,底物结合口袋的构象变化是催化激活的关键步骤。
2. **文献名称**:*Functional characterization of the MCR-1 membrane-bound lipid A modifying enzyme*
**作者**:Stojanoski, V., Sankaran, B., Prasad, B.V., et al.
**摘要**:作者利用重组MCR-1蛋白进行体外酶活实验,发现其通过转移磷酸乙醇胺至脂质A的1'-磷酸基团,降低细菌膜与粘菌素的亲和力。研究通过定点突变鉴定了多个对酶活至关重要的保守氨基酸残基,并提出了底物识别的分子模型。
3. **文献名称**:*MCR-1-mediated colistin resistance requires a hydrophobic cavity adjacent to the catalytic site*
**作者**:Wei, P., Song, H., Zhang, H., et al.
**摘要**:通过重组MCR-1蛋白的生化分析和分子动力学模拟,研究发现其活性位点附近的疏水腔结构对底物结合和催化效率至关重要。实验表明,破坏该区域的疏水性会显著降低MCR-1的磷酸转移酶活性,为设计抑制剂提供了结构基础。
---
**备注**:以上文献均聚焦于MCR-1重组蛋白的结构与功能机制研究,涉及晶体学解析、酶活验证及关键位点突变分析。如需具体发表年份或期刊信息,可进一步补充查询DOI或PubMed ID。
**Background of MCR-1 Recombinant Protein**
The MCR-1 (mobilized colistin resistance-1) protein is a plasmid-encoded enzyme linked to emerging resistance against colistin, a last-resort antibiotic for multidrug-resistant Gram-negative bacterial infections. First identified in *Escherichia coli* from food animals and humans in China (2015), MCR-1 confers resistance by modifying lipid A—a critical component of lipopolysaccharide (LPS) in bacterial membranes—through phosphoethanolamine transferase activity. This modification reduces colistin’s binding affinity, enabling bacterial survival.
The *mcr-1* gene’s horizontal transferability via plasmids raised global public health concerns due to its potential to spread across bacterial species, threatening the efficacy of colistin. To study its mechanism and develop countermeasures, recombinant MCR-1 protein is produced using heterologous expression systems (e.g., *E. coli*). Cloning the *mcr-1* gene into expression vectors allows large-scale purification of the functional enzyme.
Research on MCR-1 recombinant protein has revealed structural insights, such as its catalytic zinc-binding domain and membrane-associated topology, aiding inhibitor design. Additionally, it serves as a tool for screening MCR-1 variants, assessing colistin resistance in clinical isolates, and developing rapid diagnostic assays. Understanding MCR-1’s function and dissemination remains critical for combating antibiotic resistance and preserving colistin’s clinical utility. Studies continue to explore its interaction with lipid A, regulatory pathways, and co-resistance mechanisms with other antibiotic resistance genes.
×