纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | Emb |
Uniprot No | Q6PCB8 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-327aa |
氨基酸序列 | MRALPGLLEARARTPRLLLLQCLLAAARPSSADGSAPDSPFTSPPLREEIMANNFSLESHNISLTEHSSMPVEKNITLERPSNVNLTCQFTTSGDLNAVNVTWKKDGEQLENNYLVSATGSTLYTQYRFTIINSKQMGSYSCFFREEKEQRGTFNFKVPELHGKNKPLISYVGDSTVLTCKCQNCFPLNWTWYSSNGSVKVPVGVQMNKYVINGTYANETKLKITQLLEEDGESYWCRALFQLGESEEHIELVVLSYLVPLKPFLVIVAEVILLVATILLCEKYTQKKKKHSDEGKEFEQIEQLKSDDSNGIENNVPRHRKNESLGQ |
预测分子量 | 36,8 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于Emb重组蛋白的虚构参考文献示例(内容基于常见研究方向模拟,非真实文献):
1. **《高效表达与纯化结核分枝杆菌Emb重组蛋白的工艺优化》**
作者:Smith, J. et al. (2020)
摘要:本研究通过优化大肠杆菌表达系统,实现了Emb蛋白(Rv3793)的可溶性高效表达,并采用镍柱亲和层析和分子筛纯化获得高纯度蛋白。酶活实验证实重组Emb蛋白具有阿拉伯糖基转移酶活性,为后续药物靶点研究奠定基础。
2. **《Emb蛋白晶体结构揭示其抗生素耐药机制》**
作者:Johnson, R. et al. (2021)
摘要:通过X射线晶体学解析了重组Emb蛋白的三维结构(分辨率2.1Å),发现其活性口袋的关键氨基酸残基与乙胺丁醇耐药性相关突变位点重叠,为设计新型抗结核药物提供结构依据。
3. **《基于Emb重组蛋白的高通量抑制剂筛选平台开发》**
作者:Lee, M. et al. (2019)
摘要:利用纯化的Emb重组蛋白建立荧光底物酶活检测体系,筛选了5000种化合物库,发现3种小分子可显著抑制Emb活性,其中化合物X对结核分枝杆菌的最小抑菌浓度(MIC)为2μg/mL。
4. **《Emb基因敲除对分枝杆菌细胞壁合成的影响》**
作者:García, A. et al. (2018)
摘要:通过CRISPR-Cas9技术构建Emb缺陷型分枝杆菌,发现突变体细胞壁阿拉伯半乳聚糖含量下降70%,且生长速率减缓,证实Emb蛋白在细胞壁生物合成中起关键作用。
**Background of Emb Recombinant Proteins**
Emb recombinant proteins are engineered versions of the *emb* gene-encoded proteins, originally identified in bacterial pathogens like *Escherichia coli* and *Salmonella*. These proteins play critical roles in bacterial cell wall biosynthesis, particularly in the formation of the outer membrane, a protective barrier that contributes to antibiotic resistance and host immune evasion. The Emb proteins are associated with the synthesis or modification of lipopolysaccharides (LPS) or other membrane components, making them essential for bacterial survival and virulence.
The development of recombinant Emb proteins leverages genetic engineering to express and purify these proteins in heterologous systems, such as *E. coli* or mammalian cell cultures. This approach enables large-scale production of highly pure proteins for functional studies, diagnostics, and therapeutic applications. Recombinant technology allows modifications (e.g., tagging, mutagenesis) to enhance protein stability, solubility, or immunogenicity, facilitating their use in structural biology (e.g., crystallography) or antibody production.
Research on Emb proteins has gained attention due to their potential as targets for novel antimicrobial agents. By disrupting Emb-mediated pathways, new drugs could counteract antibiotic resistance mechanisms. Additionally, recombinant Emb proteins serve as antigens in diagnostic assays to detect bacterial infections or in vaccine development to elicit protective immune responses.
Recent advances in structural biology and bioinformatics have deepened insights into Emb protein mechanisms, guiding rational drug design. However, challenges remain, including understanding their regulatory networks and optimizing recombinant expression for diverse applications. Overall, Emb recombinant proteins represent a bridge between basic microbiology and translational solutions for combating bacterial infections.
×