纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | POLM |
Uniprot No | Q9NP87 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-494aa |
氨基酸序列 | MLPKRRRARVGSPSGDAASSTPPSTRFPGVAIYLVEPRMGRSRRAFLTGLARSKGFRVLDACSSEATHVVMEETSAEEAVSWQERRMAAAPPGCTPPALLDISWLTESLGAGQPVPVECRHRLEVAGPRKGPLSPAWMPAYACQRPTPLTHHNTGLSEALEILAEAAGFEGSEGRLLTFCRAASVLKALPSPVTTLSQLQGLPHFGEHSSRVVQELLEHGVCEEVERVRRSERYQTMKLFTQIFGVGVKTADRWYREGLRTLDDLREQPQKLTQQQKAGLQHHQDLSTPVLRSDVDALQQVVEEAVGQALPGATVTLTGGFRRGKLQGHDVDFLITHPKEGQEAGLLPRVMCRLQDQGLILYHQHQHSCCESPTRLAQQSHMDAFERSFCIFRLPQPPGAAVGGSTRPCPSWKAVRVDLVVAPVSQFPFALLGWTGSKLFQRELRRFSRKEKGLWLNSHGLFDPEQKTFFQAASEEDIFRHLGLEYLPPEQRNA |
预测分子量 | 58.8 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4条与**POLM(DNA聚合酶μ)重组蛋白**相关的参考文献,简要概括内容:
---
1. **标题**: *Structural Insights into DNA Polymerase μ’s Substrate Specificity*
**作者**: Nick McElhinny, et al.
**摘要**: 研究通过重组表达人源POLM蛋白,结合生化实验和结构分析,揭示了POLM在非同源末端连接(NHEJ)中的独特底物选择机制,尤其是其对不连续DNA末端的结合偏好。
2. **标题**: *Crystal Structure of DNA Polymerase μ Reveals a Unique Active Site*
**作者**: Sylvain Doublié, et al.
**摘要**: 报道了重组POLM蛋白的晶体结构,阐明了其活性位点的构象特征,解释了POLM在修复双链断裂时催化微同源序列配对的分子基础。
3. **标题**: *POLM Deficiency Impairs V(D)J Recombination and Genomic Stability*
**作者**: Katherine Roberts, Dale Ramsden
**摘要**: 利用重组POLM蛋白进行体外V(D)J重组实验,证明POLM在免疫系统多样性生成中的关键作用,并揭示其功能缺失导致基因组不稳定的机制。
4. **标题**: *Engineering POLM for Enhanced Gene Editing Applications*
**作者**: João André, et al.
**摘要**: 通过重组技术对POLM进行定向进化改造,优化其催化效率和保真度,探索其在CRISPR-Cas9介导的基因编辑中的潜在应用价值。
---
注:以上文献为示例性质,具体发表信息需根据实际数据库(如PubMed、ScienceDirect)检索。
POLM (DNA polymerase mu) is a member of the X-family of DNA polymerases, playing a critical role in DNA repair processes, particularly in non-homologous end joining (NHEJ), a pathway essential for repairing double-strand DNA breaks (DSBs). Discovered in the early 2000s, POLM is distinguished by its ability to perform template-dependent and template-independent DNA synthesis, enabling it to bridge DNA gaps with limited homology. This flexibility is vital in immune system diversification (V(D)J recombination) and maintaining genomic stability under genotoxic stress.
Structurally, POLM contains conserved domains, including a BRCA1 C-terminal (BRCT) domain for protein interactions and a polymerase core with a unique β-meander insert that influences substrate specificity. Unlike other X-family polymerases (e.g., POLλ), POLM preferentially incorporates ribonucleotides, suggesting a potential evolutionary link to RNA-mediated DNA repair.
Recombinant POLM proteins are produced via heterologous expression systems (e.g., *E. coli* or insect cells) for functional and structural studies. These studies highlight its role in error-prone repair, which may contribute to oncogenic mutations but also offers adaptive advantages in immune diversity. Applications of recombinant POLM span biotechnology and medicine, including CRISPR-based gene editing optimization and cancer therapy research, where modulating POLM activity could enhance precision or sensitize cells to DNA-damaging agents.
Current research focuses on elucidating POLM's regulation, interplay with other repair proteins (e.g., Ku70/80. XRCC4), and its impact on genome integrity. Understanding POLM’s mechanisms may inform strategies to target DNA repair vulnerabilities in diseases like cancer or improve genome-editing technologies.
×