纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | CREM |
Uniprot No | Q03060 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-345aa |
氨基酸序列 | MTMETVESQHDGSITASLTESKSAHVQTQTGQNSIPALAQVSVAGSGTRRGSPAVTLVQLPSGQTIHVQGVIQTPQPWVIQSSEIHTVQVAAIAETDESAESEGVIDSHKRREILSRRPSYRKILNELSSDVPGVPKIEEERSEEEGTPPSIATMAVPTSIYQTSTGQYIAIAQGGTIQISNPGSDGVQGLQALTMTNSGAPPPGATIVQYAAQSADGTQQFFVPGSQVVVQDEETELAPSHMAAATGDMPTYQIRAPTAALPQGVVMAASPGSLHSPQQLAEEATRKRELRLMKNREAAKECRRRKKEYVKCLESRVAVLEVQNKKLIEELETLKDICSPKTDY |
预测分子量 | 37 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于CREM重组蛋白的3篇参考文献示例(内容基于模拟文献,非真实存在):
---
1. **文献名称**: *Expression and Functional Characterization of Recombinant CREM Protein in Mammalian Cells*
**作者**: Smith J, et al.
**摘要**: 本研究成功构建了人类CREM基因的重组表达载体,并在HEK293细胞中高效表达。通过体外转录活性实验发现,重组CREM蛋白可特异性结合cAMP响应元件(CRE),且其磷酸化修饰显著影响靶基因的调控能力。
---
2. **文献名称**: *Structural Analysis of CREM Recombinant Protein by X-ray Crystallography*
**作者**: Tanaka K, et al.
**摘要**: 作者解析了重组CREM蛋白的晶体结构(分辨率2.8Å),揭示了其DNA结合结构域的关键氨基酸残基与CRE元件的相互作用机制,为设计靶向CREM的小分子抑制剂提供了结构基础。
---
3. **文献名称**: *Role of Recombinant CREM Isoforms in Autoimmune Disease Pathogenesis*
**作者**: Müller R, et al.
**摘要**: 通过纯化多种CREM剪接变体重组蛋白,研究发现特定异构体(如CREMα)在系统性红斑狼疮(SLE)患者T细胞中异常表达,并证实其通过抑制IL-2转录加剧自身免疫反应。
---
注:以上文献为模拟示例,实际研究中建议通过PubMed或Web of Science以关键词“CREM recombinant protein”检索真实文献。
CREM (cAMP Response Element Modulator) is a member of the CREB (cAMP Response Element-Binding) family of transcription factors, which regulate gene expression in response to cyclic AMP (cAMP) signaling. Discovered in the late 1980s, CREM plays a critical role in mediating cellular responses to hormones, neurotransmitters, and environmental stimuli. It binds to cAMP response elements (CREs) in promoter regions of target genes, modulating transcription through interactions with co-activators or repressors. Unique among CREB family proteins, CREM exhibits remarkable functional diversity due to alternative splicing, generating isoforms that can act as transcriptional activators (e.g., CREMτ) or repressors (e.g., ICER – Inducible cAMP Early Repressor). This duality allows fine-tuned regulation of processes like circadian rhythm, immune function, and reproductive biology.
Recombinant CREM proteins are engineered using expression systems (e.g., E. coli, mammalian cells) to produce purified, functional forms for research. These proteins retain DNA-binding domains (leucine zipper motifs) and regulatory regions subject to post-translational modifications, particularly phosphorylation by kinases like PKA. Recombinant CREM enables mechanistic studies of cAMP-dependent signaling, protein-DNA interactions, and isoform-specific effects. Applications range from elucidating CREM's role in spermatogenesis and neuronal plasticity to exploring its dysregulation in diseases such as cancer, autoimmune disorders, and mood disorders. The development of recombinant CREM variants (wild-type, mutants, tagged versions) has accelerated drug discovery efforts targeting cAMP-responsive pathways while providing tools for diagnostic assays and functional genomics.
×