纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | ALAS2 |
Uniprot No | P22557 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 50-587aa |
氨基酸序列 | QIHLKATKAGGDSPSWAKGHCPFMLSELQDGKSKIVQKAAPEVQEDVKAFKTDLPSSLVSVSLRKPFSGPQEQEQISGKVTHLIQNNMPGNYVFSYDQFFRDKIMEKKQDHTYRVFKTVNRWADAYPFAQHFSEASVASKDVSVWCSNDYLGMSRHPQVLQATQETLQRHGAGAGGTRNISGTSKFHVELEQELAELHQKDSALLFSSCFVANDSTLFTLAKILPGCEIYSDAGNHASMIQGIRNSGAAKFVFRHNDPDHLKKLLEKSNPKIPKIVAFETVHSMDGAICPLEELCDVSHQYGALTFVDEVHAVGLYGSRGAGIGERDGIMHKIDIISGTLGKAFGCVGGYIASTRDLVDMVRSYAAGFIFTTSLPPMVLSGALESVRLLKGEEGQALRRAHQRNVKHMRQLLMDRGLPVIPCPSHIIPIRVGNAALNSKLCDLLLSKHGIYVQAINYPTVPRGEELLRLAPSPHHSPQMMEDFVEKLLLAWTAVGLPLQDVSVAACNFCRRPVHFELMSEWERSYFGNMGPQYVTTYA |
预测分子量 | 63.5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于ALAS2重组蛋白的模拟参考文献示例(文献信息为虚构,仅供格式参考):
1. **文献名称**: "Recombinant Human ALAS2: Expression, Purification, and Functional Characterization in Erythroid Cells"
**作者**: Fujita H, et al.
**摘要**: 本研究报道了人源ALAS2重组蛋白在大肠杆菌中的高效表达和纯化方法,并验证其在体外催化甘氨酸和琥珀酰辅酶A生成δ-氨基乙酰丙酸(ALA)的酶活性,揭示了ALAS2在血红素合成中的关键作用。
2. **文献名称**: "Structural Insights into ALAS2 Mutations Associated with X-linked Sideroblastic Anemia"
**作者**: Maynard DM, et al.
**摘要**: 通过X射线晶体学解析了重组ALAS2蛋白的三维结构,发现其活性位点突变(如R452C)会导致酶功能丧失,阐明了遗传性铁粒幼细胞性贫血的分子机制。
3. **文献名称**: "Regulation of ALAS2 Expression by Iron Availability: Implications for Erythropoiesis"
**作者**: Chen JJ, et al.
**摘要**: 利用重组ALAS2蛋白和细胞模型,证明铁调节元件(IRE)在ALAS2 mRNA上的结合调控其翻译效率,为铁代谢异常相关贫血提供了新的治疗靶点。
4. **文献名称**: "Gene Therapy Using ALAS2 Recombinant Protein Rescues Heme Deficiency in Zebrafish Models"
**作者**: Kimura T, et al.
**摘要**: 在斑马鱼模型中注射重组ALAS2蛋白,成功恢复血红素合成并改善贫血表型,为ALAS2缺陷相关疾病的蛋白替代疗法提供了实验依据。
---
**注意**:以上文献为示例,实际研究中请通过 **PubMed/Google Scholar** 等平台检索真实文献(关键词:ALAS2 recombinant protein, heme biosynthesis, sideroblastic anemia)。
**Background of ALAS2 Recombinant Protein**
ALAS2 (Aminolevulinate Synthase 2) is a mitochondrial enzyme encoded by the *ALAS2* gene, located on the X chromosome. It catalyzes the first and rate-limiting step in the heme biosynthesis pathway: the condensation of glycine and succinyl-CoA to form δ-aminolevulinic acid (ALA). This enzyme is predominantly expressed in erythroid precursor cells, where heme production is essential for hemoglobin synthesis and oxygen transport in red blood cells. Dysregulation or mutations in *ALAS2* are associated with hematologic disorders such as X-linked sideroblastic anemia (XLSA), characterized by defective heme synthesis and iron accumulation in mitochondria.
Recombinant ALAS2 protein is produced using genetic engineering techniques, often expressed in bacterial (e.g., *E. coli*) or eukaryotic systems (e.g., yeast or mammalian cells). Its production enables detailed biochemical studies, including enzyme kinetics, structural analysis, and interactions with substrates or inhibitors. Researchers use recombinant ALAS2 to investigate the molecular mechanisms underlying *ALAS2*-related pathologies, screen potential therapeutic compounds, or develop enzyme replacement strategies.
Furthermore, ALAS2 has garnered interest in the context of porphyrias and iron metabolism disorders. Its activity is tightly regulated by iron availability and cellular demands, mediated through iron-responsive elements (IREs) in its mRNA. Recombinant ALAS2 also serves as a tool to explore therapeutic approaches, such as gene therapy or small-molecule modulators, to restore heme balance in diseases like XLSA. Despite progress, challenges remain in optimizing recombinant ALAS2 stability and delivery for clinical applications. Ongoing research aims to bridge these gaps, leveraging advances in protein engineering and targeted drug design.
×