纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | JA |
Uniprot No | O75822 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 2-258aa |
氨基酸序列 | AAAAAAAGD SDSWDADAFS VEDPVRKVGG GGTAGGDRWE GEDEDEDVKD NWDDDDDEKK EEAEVKPEVK ISEKKKIAEK IKEKERQQKK RQEEIKKRLE EPEEPKVLTP EEQLADKLRL KKLQEESDLE LAKETFGVNN AVYGIDAMNP SSRDDFTEFG KLLKDKITQY EKSLYYASFL EVLVRDVCIS LEIDDLKKIT NSLTVLCSEK QKQEKQSKAK KKKKGVVPGG GLKATMKDDL ADYGGYDGGY VQDYEDFM |
预测分子量 | 29 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于茉莉酸(JA)相关重组蛋白研究的模拟参考文献示例,内容基于领域内常见研究方向概括:
---
1. **文献名称**:重组JAZ1蛋白的表达及其与MYC2转录因子的相互作用分析
**作者**:Chen L., Wang X., et al.
**摘要**:本研究通过在大肠杆菌中成功表达并纯化拟南芥来源的重组JAZ1蛋白,利用Pull-down和荧光素酶报告系统验证了JAZ1与MYC2的直接互作,揭示了JA信号通路中JAZ-MYC模块的动态调控机制。
---
2. **文献名称**:茉莉酸合成关键酶AOS的重组制备与酶活特性
**作者**:Zhang Y., Li H., et al.
**摘要**:作者在昆虫细胞系统中高效表达了重组拟南芥AOS(Allene Oxide Synthase),通过体外酶活实验证实其催化12-氧-植物二烯酸合成的功能,并利用X射线晶体学解析了AOS的三维结构,为JA生物合成机制提供结构基础。
---
3. **文献名称**:基于重组COI1蛋白的JA信号通路体外筛选体系构建
**作者**:Kuroki S., Nakamura T., et al.
**摘要**:研究通过毕赤酵母系统表达并纯化COI1-JAZ复合体蛋白,建立了一种基于表面等离子体共振(SPR)的高通量筛选平台,用于鉴定新型JA类似物或信号抑制剂,为农业抗逆剂开发提供技术支撑。
---
**注**:以上文献为模拟内容,实际引用时需查询真实数据库(如PubMed、Web of Science)获取准确信息。
Jasmonic acid (JA) and its derivatives, collectively termed jasmonates, are lipid-derived phytohormones central to plant defense mechanisms against biotic stressors, such as herbivore attacks and pathogen infections, as well as abiotic stresses like drought and UV radiation. They also regulate developmental processes, including root growth and senescence. JA signaling involves a complex cascade, starting with membrane lipid peroxidation, leading to the biosynthesis of bioactive JA derivatives, which interact with receptors like COI1 (Coronatine Insensitive 1), triggering ubiquitin-mediated degradation of JAZ (Jasmonate ZIM-domain) repressors and activation of transcription factors.
Recombinant JA-related proteins, produced via genetic engineering in systems like *E. coli*, yeast, or insect cells, are pivotal for studying JA pathways. These proteins include enzymes involved in JA biosynthesis (e.g., lipoxygenases, allene oxide synthases), signaling components (e.g., COI1. JAZ proteins), or JA-modified transcription factors. Recombinant technology enables large-scale production, structural analysis (e.g., crystallography), and functional assays (e.g., protein interaction studies), offering insights into JA perception, signal transduction, and crosstalk with other hormones.
Applications span agricultural biotechnology, such as engineering crops with enhanced stress resistance by modulating JA pathways, or developing JA-based biopesticides. Challenges include maintaining protein activity post-purification and mimicking native post-translational modifications. Ongoing research focuses on optimizing expression systems and leveraging structural data to design synthetic JA analogs or engineered receptors, aiming to improve crop resilience sustainably. JA recombinant proteins thus bridge fundamental research and practical solutions in plant science. (298 words)
×