纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | EPA |
Uniprot No | Q15375 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-998aa |
氨基酸序列 | MVFQTRYPSWIILCYIWLLRFAHTGEAQAAKEVLLLDSKAQQTELEWISSPPNGWEEISGLDENYTPIRTYQVCQVMEPNQNNWLRTNWISKGNAQRIFVELKFTLRDCNSLPGVLGTCKETFNLYYYETDYDTGRNIRENLYVKIDTIAADESFTQGDLGERKMKLNTEVREIGPLSKKGFYLAFQDVGACIALVSVKVYYKKCWSIIENLAIFPDTVTGSEFSSLVEVRGTCVSSAEEEAENAPRMHCSAEGEWLVPIGKCICKAGYQQKGDTCEPCGRGFYKSSSQDLQCSRCPTHSFSDKEGSSRCECEDGYYRAPSDPPYVACTRPPSAPQNLIFNINQTTVSLEWSPPADNGGRNDVTYRILCKRCSWEQGECVPCGSNIGYMPQQTGLEDNYVTVMDLLAHANYTFEVEAVNGVSDLSRSQRLFAAVSITTGQAAPSQVSGVMKERVLQRSVELSWQEPEHPNGVITEYEIKYYEKDQRERTYSTVKTKSTSASINNLKPGTVYVFQIRAFTAAGYGNYSPRLDVATLEEATGKMFEATAVSSEQNPVIIIAVVAVAGTIILVFMVFGFIIGRRHCGYSKADQEGDEELYFHFKFPGTKTYIDPETYEDPNRAVHQFAKELDASCIKIERVIGAGEFGEVCSGRLKLPGKRDVAVAIKTLKVGYTEKQRRDFLCEASIMGQFDHPNVVHLEGVVTRGKPVMIVIEFMENGALDAFLRKHDGQFTVIQLVGMLRGIAAGMRYLADMGYVHRDLAARNILVNSNLVCKVSDFGLSRVIEDDPEAVYTTTGGKIPVRWTAPEAIQYRKFTSASDVWSYGIVMWEVMSYGERPYWDMSNQDVIKAIEEGYRLPAPMDCPAGLHQLMLDCWQKERAERPKFEQIVGILDKMIRNPNSLKTPLGTCSRPISPLLDQNTPDFTTFCSVGEWLQAIKMERYKDNFTAAGYNSLESVARMTIEDVMSLGITLVGHQKKIMSSIQTMRAQMLHLHGTGIQV |
预测分子量 | 112 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于EPA重组蛋白的3篇代表性文献摘要示例(注:文献为模拟生成,仅供参考):
1. **文献名称**:*Expression and purification of recombinant EPA protein from Pseudomonas aeruginosa for vaccine development*
**作者**:Smith J., et al.
**摘要**:研究利用大肠杆菌表达系统成功表达绿脓杆菌外毒素A(EPA)的重组蛋白,通过亲和层析纯化获得高纯度产物,并验证其作为疫苗载体的抗原递送功能。
2. **文献名称**:*Structural analysis of EPA domain in bacterial toxin-based immunoconjugates*
**作者**:Li Y., Wang H.
**摘要**:通过X射线晶体学解析EPA结构域的三维构象,揭示其与宿主细胞表面受体结合的分子机制,为设计靶向性重组蛋白药物提供结构基础。
3. **文献名称**:*EPA-fusion protein enhances mucosal immunity in murine models*
**作者**:García R., et al.
**摘要**:将EPA与流感病毒抗原融合表达,实验证明该重组蛋白能显著激活黏膜免疫应答,为开发鼻喷式疫苗提供新策略。
如需实际文献,建议在PubMed或Web of Science检索关键词“recombinant EPA protein”或“Exotoxin A Pseudomonas aeruginosa”。
**Background of EPA Recombinant Protein**
The EPA (Exotoxin A) recombinant protein is derived from *Pseudomonas aeruginosa*, a Gram-negative bacterium known for causing opportunistic infections. Native EPA is a potent virulence factor with a three-domain structure: Domain I mediates cell binding, Domain II facilitates toxin internalization, and Domain III harbors ADP-ribosyltransferase activity, which disrupts protein synthesis by inactivating elongation factor 2 (EF-2), leading to cell death. Due to its cytotoxic properties, EPA has been extensively studied for therapeutic applications, particularly in targeted cancer therapies and immunoconjugates.
Recombinant EPA proteins are engineered through genetic modification to eliminate toxicity while retaining functional domains. By mutating key residues in Domain III (e.g., replacing glutamic acid at position 553 with aspartic acid), the ADP-ribosylating activity is abolished, rendering the protein non-toxic but still capable of efficient cellular uptake. This modification enables EPA to serve as a safe delivery vehicle for antigens, drugs, or other therapeutic agents.
In biomedical research, EPA-based recombinant proteins are widely utilized in vaccine development and targeted therapy. For instance, EPA-antigen fusion proteins enhance immune responses by directing antigens to antigen-presenting cells via EPA’s receptor-binding domain. In oncology, EPA conjugates linked to antibodies or ligands enable precise targeting of cancer cells, improving drug specificity and reducing off-target effects. Additionally, EPA’s immunogenicity can be harnessed to boost adaptive immunity in vaccine platforms.
Recent advances in protein engineering have further optimized EPA’s stability, solubility, and compatibility with conjugation technologies, expanding its utility in biotherapeutics. Its versatility and modular design make EPA a promising tool in addressing challenges in infectious diseases, cancer, and immunotherapy. Ongoing research continues to explore novel EPA-based constructs to enhance therapeutic efficacy and safety profiles.
×