纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | SD |
Uniprot No | P46060 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 2-587aa |
氨基酸序列 | ASEDIAKLA ETLAKTQVAG GQLSFKGKSL KLNTAEDAKD VIKEIEDFDS LEALRLEGNT VGVEAARVIA KALEKKSELK RCHWSDMFTG RLRTEIPPAL ISLGEGLITA GAQLVELDLS DNAFGPDGVQ GFEALLKSSA CFTLQELKLN NCGMGIGGGK ILAAALTECH RKSSAQGKPL ALKVFVAGRN RLENDGATAL AEAFRVIGTL EEVHMPQNGI NHPGITALAQ AFAVNPLLRV INLNDNTFTE KGAVAMAETL KTLRQVEVIN FGDCLVRSKG AVAIADAIRG GLPKLKELNL SFCEIKRDAA LAVAEAMADK AELEKLDLNG NTLGEEGCEQ LQEVLEGFNM AKVLASLSDD EDEEEEEEGE EEEEEAEEEE EEDEEEEEEE EEEEEEEPQQ RGQGEKSATP SRKILDPNTG EPAPVLSSPP PADVSTFLAF PSPEKLLRLG PKSSVLIAQQ TDTSDPEKVV SAFLKVSSVF KDEATVRMAV QDAVDALMQK AFNSSSFNSN TFLTRLLVHM GLLKSEDKVK AIANLYGPLM ALNHMVQQDY FPKALAPLLL AFVTKPNSAL ESCSFARHSL LQTLYKV |
预测分子量 | 63,5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于SD重组蛋白的3篇示例参考文献(内容为虚构,仅作格式参考):
1. **文献名称**:《基于SD序列优化的重组蛋白高效表达系统构建》
**作者**:李明等
**摘要**:本研究通过优化SD(Shine-Dalgarno)序列的碱基组成,设计了一种新型原核表达载体,显著提高了重组蛋白在大肠杆菌中的表达效率。实验表明,改造后的SD序列可使目标蛋白产量提升约2.3倍,为工业化生产提供技术支持。
2. **文献名称**:《SD重组蛋白在哺乳动物细胞中的分泌表达与纯化》
**作者**:Chen Y, Wang X
**摘要**:探讨了将原核SD序列与真核信号肽结合的策略,实现了重组蛋白在CHO细胞中的高效分泌表达。通过亲和层析技术纯化获得高纯度蛋白,并验证其生物活性,为抗体药物开发提供新方法。
3. **文献名称**:《SD序列修饰对重组酶热稳定性的影响研究》
**作者**:Smith J et al.
**摘要**:通过定向改造SD序列周边区域,显著提高了重组纤维素酶的热稳定性。分子动力学模拟表明,序列修饰影响了mRNA二级结构,进而优化了翻译效率和蛋白折叠,为工业酶制剂开发提供理论依据。
注:以上内容为模拟文献,实际引用需查询真实数据库(如PubMed、ScienceDirect)。
**Background of Recombinant SD Proteins**
Recombinant proteins, engineered through genetic modification, are pivotal in modern biotechnology, medicine, and research. The term "SD protein" typically refers to recombinant proteins produced using cloning or expression systems involving *Shine-Dalgarno (SD) sequences*, critical for prokaryotic translation initiation. In *Escherichia coli*—the most common host for recombinant protein production—the SD sequence, a ribosomal binding site (RBS), aligns mRNA with the ribosome to initiate protein synthesis. Optimizing the SD sequence enhances translation efficiency, directly impacting protein yield and quality.
The development of recombinant SD proteins stems from advances in molecular biology, such as restriction enzyme cloning, PCR, and synthetic biology tools (e.g., Gibson Assembly, Golden Gate cloning). These technologies enable precise insertion of target genes into expression vectors downstream of promoter regions and SD sequences. Common systems include T7 or lac promoters paired with optimized SD motifs to maximize expression.
Applications of recombinant SD proteins span therapeutics (e.g., insulin, monoclonal antibodies), industrial enzymes, and research reagents. Their production in *E. coli* offers cost-effectiveness and scalability but faces challenges like improper folding or post-translational modification limitations, often addressed by alternative hosts (e.g., yeast, mammalian cells).
Recent innovations focus on RBS engineering via computational tools (e.g., RBS Calculator) to fine-tune SD sequences, balancing expression levels with host viability. Additionally, fusion tags (e.g., His-tag) simplify purification. Despite advancements, achieving high yields of functional proteins remains a multidisciplinary endeavor, integrating genetic design, fermentation optimization, and downstream processing.
In summary, recombinant SD proteins exemplify the synergy between genetic engineering and industrial biotechnology, driving breakthroughs in healthcare, agriculture, and sustainable manufacturing.
×