纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | F1+2 |
Uniprot No | P24903 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-491aa |
氨基酸序列 | MDSISTAILLLLLALVCLLLTLSSRDKGKLPPGPRPLSILGNLLLLCSQDMLTSLTKLSKEYGSMYTVHLGPRRVVVLSGYQAVKEALVDQGEEFSGRGDYPAFFNFTKGNGIAFSSGDRWKVLRQFSIQILRNFGMGKRSIEERILEEGSFLLAELRKTEGEPFDPTFVLSRSVSNIICSVLFGSRFDYDDERLLTIIRLINDNFQIMSSPWGELYDIFPSLLDWVPGPHQRIFQNFKCLRDLIAHSVHDHQASLDPRSPRDFIQCFLTKMAEEKEDPLSHFHMDTLLMTTHNLLFGGTKTVSTTLHHAFLALMKYPKVQARVQEEIDLVVGRARLPALKDRAAMPYTDAVIHEVQRFADIIPMNLPHRVTRDTAFRGFLIPKGTDVITLLNTVHYDPSQFLTPQEFNPEHFLDANQSFKKSPAFMPFSAGRRLCLGESLARMELFLYLTAILQSFSLQPLGAPEDIDLTPLSSGLGNLPRPFQLCLRPR |
预测分子量 | 55,5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于F1+2重组蛋白(凝血酶原片段1+2相关研究)的模拟参考文献示例(非真实文献,仅供格式参考):
1. **《重组凝血酶原片段F1+2的制备及其在血栓性疾病诊断中的应用》**
*作者:Smith A, et al.*
摘要:研究通过基因工程技术表达重组F1+2蛋白,建立高灵敏度ELISA检测方法,用于评估凝血系统活化状态,为血栓性疾病早期诊断提供标志物。
2. **《F1+2重组蛋白在动物模型中的促凝血机制研究》**
*作者:Chen L, Wang Y.*
摘要:通过注射重组F1+2蛋白诱导小鼠血栓模型,揭示其通过激活凝血酶-抗凝血酶复合物(TAT)通路促进血小板聚集的分子机制。
3. **《凝血酶原片段F1+2重组蛋白的结构与功能分析》**
*作者:Zhang R, et al.*
摘要:利用X射线晶体学解析重组F1+2蛋白的三维结构,发现其特定结构域与凝血因子Xa的结合活性密切相关,为抗凝药物设计提供新靶点。
4. **《基于F1+2重组蛋白的纳米载药系统开发》**
*作者:Kim S, et al.*
摘要:将重组F1+2蛋白与靶向肽偶联构建纳米颗粒,实现抗凝血药物在血栓部位的特异性递送,提高治疗效果并减少出血风险。
注:以上为模拟文献,实际文献请通过PubMed、Web of Science或Google Scholar检索关键词“prothrombin fragment 1+2 recombinant”或“F1+2 recombinant protein”获取。
**Background of F1+F2 Recombinant Proteins**
F1+F2 recombinant proteins are engineered fusion constructs derived from the structural components of viral or bacterial pathogens, designed to enhance immune responses. The "F1" and "F2" nomenclature typically refers to two antigenic subunits or domains of a pathogen’s surface protein. For instance, in influenza virus research, F1 may correspond to the HA1 subunit of hemagglutinin (responsible for receptor binding), while F2 represents the HA2 subunit (mediating membrane fusion). By combining these subunits into a single recombinant protein, researchers aim to preserve conformational epitopes critical for neutralizing antibody induction while improving stability and immunogenicity compared to isolated subunits.
The concept builds on advancements in genetic engineering and structural vaccinology. Recombinant DNA technology allows precise linkage of F1 and F2 domains, often incorporating linkers or tags to optimize folding, solubility, or purification. This approach is particularly valuable for pathogens with high variability, as conserved regions from F1 and F2 can be prioritized to elicit broad immunity. For example, in coronaviruses, F1+F2 chimeras targeting conserved regions of the spike protein have been explored for universal vaccine development.
Applications extend beyond vaccines; F1+F2 proteins are used in diagnostic assays, therapeutic antibody development, and studying host-pathogen interactions. Their design often integrates adjuvants or delivery platforms (e.g., nanoparticles) to enhance immune activation. Challenges include balancing structural integrity with scalability, avoiding immunodominant but non-protective epitopes, and addressing potential autoimmune cross-reactivity. Despite these hurdles, F1+F2 recombinant strategies represent a versatile tool in combating infectious diseases, exemplified by their role in COVID-19 vaccine candidates and ongoing research against RSV, HIV, and other pathogens.
×