纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | CSN3 |
Uniprot No | P07498 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 21-182aa |
氨基酸序列 | EVQNQKQPAC HENDERPFYQ KTAPYVPMYY VPNSYPYYGT NLYQRRPAIA INNPYVPRTY YANPAVVRPH AQIPQRQYLP NSHPPTVVRR PNLHPSFIAI PPKKIQDKII IPTINTIATV EPTPAPATEP TVDSVVTPEA FSESIITSTP ETTTVAVTPP TA |
预测分子量 | kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于CSN3(κ-酪蛋白)重组蛋白的示例参考文献及摘要概括(文献为示例性构造,仅供参考):
1. **《重组κ-酪蛋白在大肠杆菌中的表达与功能分析》**
*作者:Smith A, et al.*
摘要:本研究通过大肠杆菌表达系统成功重组表达了CSN3蛋白,并优化了纯化条件。功能实验表明,重组CSN3能够促进乳蛋白胶束的稳定,揭示了其在乳制品加工中的潜在应用价值。
2. **《酵母表达系统中κ-酪蛋白的异源合成及特性研究》**
*作者:Zhang L, et al.*
摘要:利用毕赤酵母系统高效表达重组CSN3.蛋白经糖基化修饰后展现出与天然κ-酪蛋白相似的理化性质,为工业化生产功能性乳蛋白提供了新策略。
3. **《重组CSN3对乳凝胶形成的影响机制》**
*作者:Tanaka K, et al.*
摘要:通过体外重组CSN3与β-酪蛋白的相互作用实验,证实重组CSN3通过调节钙离子结合能力影响乳凝胶强度,阐明了其在奶酪制作中的关键作用。
4. **《基于昆虫细胞系统的κ-酪蛋白规模化生产》**
*作者:Wang H, et al.*
摘要:采用杆状病毒-昆虫细胞系统实现了重组CSN3的高效表达,产量达到毫克级/升,为大规模生产具有生物活性的κ-酪蛋白提供了可行性方案。
注:以上文献为模拟内容,实际研究中建议通过学术数据库(如PubMed、Web of Science)检索真实文献。
The CSN3 (COP9 signalosome subunit 3) protein is a critical component of the evolutionarily conserved COP9 signalosome (CSN), an eight-subunit complex regulating ubiquitin-proteasome-mediated protein degradation. CSN3. encoded by the COPS3 gene in humans, plays a structural and regulatory role in maintaining CSN complex integrity and its enzymatic activities, particularly the deneddylase function targeting cullin-RING ubiquitin ligases (CRLs). By modulating CRL activity, CSN3 indirectly influences diverse cellular processes, including cell cycle progression, DNA repair, and stress responses.
Recombinant CSN3 protein is engineered using expression systems like Escherichia coli or mammalian cell cultures to enable functional and structural studies. Its production typically involves cloning the COPS3 gene into expression vectors, followed by purification via affinity tags (e.g., His-tag). Recombinant CSN3 retains the ability to integrate into the CSN complex, making it valuable for in vitro assays exploring interactions with other subunits or substrates. Researchers also utilize it to study phosphorylation events, as post-translational modifications regulate CSN3's role in signal transduction.
Interest in CSN3 spans basic and applied research. Dysregulation of the CSN complex is linked to cancers, neurodegenerative diseases, and immune disorders. Recombinant CSN3 aids in drug discovery by serving as a target for small molecules aiming to restore proteostasis. Additionally, it supports mechanistic studies of diseases caused by COPS3 mutations, such as developmental syndromes. Its role in maintaining genomic stability further underscores its relevance in oncology, particularly in understanding chemotherapy resistance. Overall, recombinant CSN3 is a pivotal tool for dissecting cellular regulation pathways and developing therapeutic strategies.
×