纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | DDB2 |
Uniprot No | Q92466 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-427aa |
氨基酸序列 | MAPKKRPETQKTSEIVLRPRNKRSRSPLELEPEAKKLCAKGSGPSRRCDSDCLWVGLAGPQILPPCRSIVRTLHQHKLGRASWPSVQQGLQQSFLHTLDSYRILQKAAPFDRRATSLAWHPTHPSTVAVGSKGGDIMLWNFGIKDKPTFIKGIGAGGSITGLKFNPLNTNQFYASSMEGTTRLQDFKGNILRVFASSDTINIWFCSLDVSASSRMVVTGDNVGNVILLNMDGKELWNLRMHKKKVTHVALNPCCDWFLATASVDQTVKIWDLRQVRGKASFLYSLPHRHPVNAACFSPDGARLLTTDQKSEIRVYSASQWDCPLGLIPHPHRHFQHLTPIKAAWHPRYNLIVVGRYPDPNFKSCTPYELRTIDVFDGNSGKMMCQLYDPESSGISSLNEFNPMGDTLASAMGYHILIWSQEEARTRK |
预测分子量 | 53.8 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于DDB2重组蛋白的3篇参考文献及其摘要概括:
1. **文献名称**:*Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex*
**作者**:Scrima A. et al.
**摘要**:该研究通过解析DDB1-DDB2复合体的晶体结构,揭示了DDB2在识别紫外线诱导的DNA损伤(如CPD和6-4PP)中的关键作用,并阐明重组DDB2蛋白如何与DDB1协作结合损伤位点,为核苷酸切除修复机制提供结构基础。
2. **文献名称**:*Recombinant DDB2 protein enhances nucleotide excision repair in vitro*
**作者**:Wakasugi M. et al.
**摘要**:文章报道了利用重组DDB2蛋白在体外修复系统中的应用,证明其能够显著提高紫外线损伤DNA的修复效率,并验证DDB2通过招募下游修复因子XPC来启动修复过程的功能。
3. **文献名称**:*Post-translational modifications regulate the function of DDB2 in DNA repair*
**作者**:Sugasawa K. et al.
**摘要**:本研究探讨了重组DDB2蛋白的翻译后修饰(如泛素化和磷酸化)对其功能的调控机制,发现修饰状态直接影响DDB2在损伤位点的滞留时间及其与修复复合体的动态相互作用,进而影响整体修复活性。
这些文献涵盖了DDB2重组蛋白的结构、功能机制及其在DNA修复中的应用研究。
DDB2 (Damage-specific DNA-binding protein 2) is a critical component of the nucleotide excision repair (NER) pathway, which addresses bulky DNA lesions caused by ultraviolet (UV) radiation or chemical agents. It forms a heterodimeric complex with DDB1 (Cul4-associated factor 17), collectively known as the UV-DDB complex. This complex acts as a sensor for cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) induced by UVB exposure, initiating the repair process by recruiting downstream NER factors.
Recombinant DDB2 protein is engineered for in vitro studies to dissect its structural and functional roles. Produced via bacterial (e.g., *E. coli*) or eukaryotic expression systems, it retains the WD40-repeat β-propeller domain essential for binding damaged DNA and the C-terminal helix-loop-helix motif mediating interactions with DDB1. Researchers often tag recombinant DDB2 (e.g., His, GST, or FLAG tags) to facilitate purification and detection.
Key applications include:
1. **Mechanistic studies**: Elucidating damage recognition dynamics and ubiquitination events (DDB2 undergoes Cul4A-RBX1-dependent degradation post-damage binding).
2. **Disease modeling**: Investigating mutations linked to xeroderma pigmentosum complementation group E (XP-E), where impaired DDB2 disrupts NER, increasing skin cancer susceptibility.
3. **Drug discovery**: Screening compounds targeting UV-DDB for chemosensitization or photoprotection.
Recent structural studies using recombinant DDB2 revealed its role in chromatin remodeling, as it binds nucleosome-wrapped lesions through histone surface interactions. Its recombinant form also aids in studying post-translational modifications (e.g., phosphorylation) regulating repair efficiency. Ongoing research leverages this tool to explore DDB2's emerging roles in transcription regulation and immune signaling beyond classical NER.
×