纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | CLPS |
Uniprot No | P04118 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 18-112aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MGSAPGPRGI IINLENGELC MNSAQCKSNC CQHSSALGLA RCTSMASENS ECSVKTLYGI YYKCPCERGL TCEGDKTIVG SITNTNFGIC HDAGRSKQ |
预测分子量 | 13 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于CLPS(羧酸酯酶相关蛋白)重组蛋白的模拟参考文献示例,涵盖其表达、功能及结构研究:
---
1. **文献名称**:重组人羧酸酯酶相关蛋白(CLPS)在大肠杆菌中的高效表达与功能鉴定
**作者**:张伟等
**摘要**:本研究通过基因工程手段将人CLPS基因克隆至大肠杆菌表达系统,优化诱导条件后获得可溶性重组蛋白。纯化后的CLPS在体外实验中显示出对脂肪酶的辅助活性,显著提高底物水解效率,为CLPS在消化机制中的应用提供依据。
2. **文献名称**:CLPS重组蛋白的结构解析及其与胰腺脂肪酶相互作用的分子机制
**作者**:Chen L, et al.
**摘要**:利用X射线晶体学解析了重组CLPS的三维结构,发现其具有典型的α/β水解酶折叠结构域。进一步分析表明,CLPS通过疏水界面与胰腺脂肪酶结合,增强后者在脂水界面的锚定能力,阐明其在脂质代谢中的关键作用。
3. **文献名称**:CLPS重组蛋白缺失对小鼠脂质吸收影响的体内研究
**作者**:Johnson R, et al.
**摘要**:通过构建CLPS基因敲除小鼠模型,发现缺失CLPS导致小鼠脂肪消化率下降40%,并伴随脂溶性维生素吸收障碍。补充重组CLPS蛋白后症状缓解,证实其在肠道脂质代谢中的必要性。
---
注:以上文献为示例性质,实际研究中请通过学术数据库检索具体文献。若需进一步分析CLPS的特定研究方向,可提供更多上下文信息。
**Background of CLPS Recombinant Protein**
Colipase (CLPS) is a small protein cofactor essential for the efficient digestion of dietary fats. Produced in the pancreas, it binds to pancreatic lipase (PNLIP) and anchors it to lipid-water interfaces, particularly in the presence of bile salts that otherwise inhibit lipase activity. This interaction ensures optimal lipolytic function, enabling the breakdown of triglycerides into absorbable fatty acids.
Recombinant CLPS refers to the protein engineered via genetic recombination, typically expressed in microbial (e.g., *E. coli*) or mammalian cell systems. The development of recombinant CLPS emerged to address limitations in isolating native colipase from animal sources, such as low yield, batch variability, and ethical concerns. Recombinant technology allows scalable production with high purity and consistency, critical for research and therapeutic applications.
Structurally, recombinant CLPS retains the conserved functional domains of native colipase, including a hydrophobic lipid-binding region and a lipase-binding site. Its stability under diverse pH and bile salt conditions makes it valuable for studying digestive disorders linked to pancreatic insufficiency (e.g., cystic fibrosis, chronic pancreatitis) and for optimizing enzyme replacement therapies. Additionally, recombinant CLPS serves as a tool in structural biology to elucidate mechanisms of lipase activation and lipid metabolism.
Beyond biomedical research, CLPS recombinant protein is explored in industrial biocatalysis for lipid modification processes. Its role in enhancing lipase efficiency under challenging conditions aligns with sustainable biomanufacturing goals. Overall, recombinant CLPS exemplifies the integration of protein engineering to advance both therapeutic innovation and biotechnological applications.
×