纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | FECH |
Uniprot No | P22830 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 55-423aa |
氨基酸序列 | GAKPQVQPQKRKPKTGILMLNMGGPETLGDVHDFLLRLFLDRDLMTLPIQNKLAPFIAKRRTPKIQEQYRRIGGGSPIKIWTSKQGEGMVKLLDELSPNTAPHKYYIGFRYVHPLTEEAIEEMERDGLERAIAFTQYPQYSCSTTGSSLNAIYRYYNQVGRKPTMKWSTIDRWPTHHLLIQCFADHILKELDHFPLEKRSEVVILFSAHSLPMSVVNRGDPYPQEVSATVQKVMERLEYCNPYRLVWQSKVGPMPWLGPQTDESIKGLCERGRKNILLVPIAFTSDHIETLYELDIEYSQVLAKECGVENIRRAESLNGNPLFSKALADLVHSHIQSNELCSKQLTLSCPLCVNPVCRETKSFFTSQQL |
预测分子量 | 49.6 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于FECH(Ferrochelatase)重组蛋白的3篇参考文献及其摘要概括:
1. **文献名称**: "Expression and Characterization of Recombinant Human Ferrochelatase"
**作者**: Medlock, A.E., Dailey, H.A.
**摘要**: 该研究报道了在大肠杆菌中成功表达并纯化重组人源FECH蛋白,分析了其酶动力学特性,发现铁离子的结合依赖特定结构域,并揭示了其催化原卟啉IX与金属离子结合的分子机制。
2. **文献名称**: "Crystal Structure of Ferrochelatase: The Terminal Enzyme in Heme Biosynthesis"
**作者**: Wu, C.K., Dailey, H.A., Rose, J.P.
**摘要**: 通过X射线晶体学解析了重组FECH的三维结构,明确了活性位点的关键氨基酸残基(如His和Glu),并提出了铁离子插入原卟啉IX的催化模型,为理解遗传突变导致的卟啉症提供了结构基础。
3. **文献名称**: "Functional Characterization of Mutant Recombinant Ferrochelatase in Erythropoietic Protoporphyria"
**作者**: Pawliuk, R., Bachelot, T., Wise, R.J.
**摘要**: 研究构建了与红细胞生成性原卟啉症相关的FECH突变体重组蛋白,发现部分突变导致酶活性显著下降,揭示了疾病发生的分子机制,并为基因治疗策略提供了实验依据。
这些文献涵盖了FECH重组蛋白的表达、结构解析及疾病相关突变的功能研究,反映了该领域的关键研究方向。
Ferrochelatase (FECH), a mitochondrial enzyme, catalyzes the final step in heme biosynthesis by inserting ferrous iron (Fe²⁺) into protoporphyrin IX to form heme. This metallation reaction is critical for cellular energy production, oxygen transport, and detoxification processes. FECH is ubiquitously expressed but is particularly abundant in erythroid cells and hepatocytes, reflecting the high demand for heme in hemoglobin and cytochrome synthesis. Structurally, human FECH is a homodimer with each subunit containing a catalytic domain and a [2Fe-2S] cluster that stabilizes the enzyme and may participate in redox sensing.
Mutations in the FECH gene are linked to erythropoietic protoporphyria (EPP), an inherited disorder characterized by defective enzyme activity, leading to toxic accumulation of protoporphyrin IX in blood and tissues. Patients experience severe photosensitivity and liver complications. The pathophysiology underscores FECH's essential role in maintaining heme homeostasis.
Recombinant FECH proteins are engineered using expression systems like E. coli, yeast, or mammalian cells to study enzyme kinetics, substrate specificity, and disease mechanisms. These proteins often include affinity tags (e.g., His-tag) for purification and are used to investigate the molecular impact of EPP-associated mutations. Recent studies employ cryo-EM and X-ray crystallography to resolve FECH structures, revealing conformational changes during catalysis. Additionally, recombinant FECH holds therapeutic potential for gene therapy or enzyme replacement strategies in EPP. Its biochemical properties are also exploited in biotechnological applications, such as biosensors for metal ion detection. Ongoing research focuses on enhancing recombinant FECH stability and activity for clinical translation.
×