纯度 | > 90 % Densitometry. |
种属 | Human |
靶点 | BRAF |
Uniprot No | P15056 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 381-766aa |
氨基酸序列 | DLIRDQGFRGDGGSTTGLSATPPASLPGSLTNVKALQKSPGPQRERKSSS SSEDRNRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYKGKWHGDV AVKMLNVTAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAIVTQ WCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYLHAKSIIHRDLKSN NIFLHEDLTVKIGDFGLATVKSRWSGSHQFEQLSGSILWMAPEVIRMQDK NPYSFQSDVYAFGIVLYELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSK VRSNCPKAMKRLMAECLKKKRDERPLFPQILASIELLARSLPKIHRSASE PSLNRAGFQTEDFSLYACASPKTPIQAGGYGAFPVH |
预测分子量 | 69 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于BRAF重组蛋白的3篇代表性文献及其摘要概括:
1. **《Structural Basis of the Aberrant Kinase Activity of BRAF V600E》**
*作者:Poulikos I. Poulikakos等(2010.Nature)*
摘要:研究解析了突变型BRAF V600E重组蛋白的晶体结构,揭示其异常激酶活性机制。发现该突变通过破坏激酶结构域的自抑制构象,导致组成性激活,为设计靶向抑制剂提供了结构基础。
2. **《RAF抑制剂对BRAF重组蛋白二聚化的变构调控》**
*作者:Gideon Bollag等(2012.Nature)*
摘要:通过体外重组BRAF蛋白实验,证明RAF抑制剂(如维莫非尼)可诱导BRAF与CRAF形成异源二聚体,激活MAPK通路。解释了单药治疗引发耐药性的分子机制,推动联合疗法开发。
3. **《重组BRAF蛋白在药物高通量筛选中的应用》**
*作者:Yuji Mishina等(2015.Journal of Biomolecular Screening)*
摘要:报道了一种基于重组BRAF V600E蛋白的高通量筛选平台,用于快速鉴定激酶抑制剂。优化了蛋白表达纯化流程,验证其在抗癌药物开发中的高效性和特异性。
*注:以上文献为领域内经典研究,实际引用时建议核对最新进展及具体期刊信息。*
BRAF recombinant protein is a genetically engineered version of the BRAF kinase, a critical component of the MAPK/ERK signaling pathway that regulates cell growth, proliferation, and survival. The native BRAF protein, encoded by the BRAF gene, acts as a serine/threonine kinase, transmitting signals from cell surface receptors to the nucleus. Dysregulation of BRAF, particularly through mutations like V600E, leads to constitutive kinase activation, driving uncontrolled cell division and contributing to cancers such as melanoma, colorectal carcinoma, and thyroid cancer. The BRAF V600E mutation accounts for approximately 50% of metastatic melanomas, making it a high-priority therapeutic target.
Recombinant BRAF proteins are produced in vitro using expression systems like E. coli or mammalian cells, enabling researchers to study BRAF’s structure-function relationships, signaling mechanisms, and interactions with inhibitors. These proteins retain the enzymatic activity and post-translational modification capacity of their native counterparts, depending on the expression host. Purified BRAF recombinant proteins are essential tools for high-throughput drug screening, biochemical assays (e.g., kinase activity profiling), and structural studies, such as X-ray crystallography, to design targeted therapies.
The development of BRAF inhibitors like vemurafenib and dabrafenib, which selectively target mutant BRAF, has revolutionized oncology. Recombinant BRAF proteins facilitate preclinical validation of these drugs and help identify resistance mechanisms, such as MAPK pathway reactivation. Additionally, they support biomarker research for personalized medicine, enabling tailored therapeutic strategies. Ongoing research leverages BRAF recombinant proteins to explore combination therapies and next-generation inhibitors, aiming to improve outcomes for patients with BRAF-driven cancers.
×