纯度 | >95%SDS-PAGE. |
种属 | Human |
靶点 | NTM |
Uniprot No | Q9P121-3 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-312aa |
氨基酸序列 | MGVCGYLFLP WKCLVVVSLR LLFLVPTGVP VRSGDATFPK AMDNVTVRQG ESATLRCTID NRVTRVAWLN RSTILYAGND KWCLDPRVVL LSNTQTQYSI EIQNVDVYDE GPYTCSVQTD NHPKTSRVHL IVQVSPKIVE ISSDISINEG NNISLTCIAT GRPEPTVTWR HISPKAVGFV SEDEYLEIQG ITREQSGDYE CSASNDVAAP VVRRVKVTVN YPPYISEAKG TGVPVGQKGT LQCEASAVPS AEFQWYKDDK RLIEGKKGVK VENRPFLSKL IFFNVSEHDY GNYTCVASNK LGHTNASIML FG |
预测分子量 | 32 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于NTM(非结核分枝杆菌)重组蛋白研究的虚构参考文献示例(实际文献需通过学术数据库查询):
1. **文献名称**: *Heterologous expression and immunogenicity analysis of NTM membrane proteins*
**作者**: Smith, J.R., et al.
**摘要**: 本研究成功在大肠杆菌中克隆表达了NTM菌株的两种膜蛋白(Rv1234和Rv5678),通过动物实验证明重组蛋白可诱导特异性Th1免疫反应,为NTM亚单位疫苗开发提供候选抗原。
2. **文献名称**: *Recombinant NTM antigens for serodiagnosis of pulmonary infections*
**作者**: Li, X., & Wang, H.
**摘要**: 筛选NTM基因组中3种分泌蛋白(ESAT-6、CFP-10、Ag85B)进行重组表达,ELISA检测显示联合使用可提升临床样本诊断特异性至92%,为NTM感染血清学检测提供新方案。
3. **文献名称**: *Structural and functional characterization of a novel NTM virulence factor*
**作者**: Gonzalez, S., et al.
**摘要**: 通过X射线晶体学解析NTM重组蛋白MmpL3的3D结构(分辨率2.1Å),发现其转运脂质的关键结构域,抑制剂筛选实验证实该蛋白可作为抗菌药物开发靶点。
4. **文献名称**: *Comparative proteomic analysis of recombinant NTM stress-response proteins*
**作者**: Tanaka, K., et al.
**摘要**: 系统表达并纯化NTM热休克蛋白家族(Hsp16-20、Hsp65、Hsp70),通过蛋白质相互作用组学揭示其在细菌环境适应中的调控网络,为理解NTM耐药机制提供分子依据。
(注:上述文献为示例性质,实际研究需参考PubMed、Web of Science等平台的真实论文)
**Background of Recombinant Proteins in Nontuberculous Mycobacteria (NTM) Research**
Nontuberculous mycobacteria (NTM) are environmentally ubiquitous, opportunistic pathogens increasingly associated with chronic pulmonary infections, particularly in immunocompromised individuals or those with pre-existing lung conditions. Unlike *Mycobacterium tuberculosis*, NTM species (e.g., *M. avium*, *M. abscessus*) exhibit broad genetic diversity and intrinsic resistance to many antibiotics, complicating treatment. Traditional drug development faces challenges due to NTM’s slow growth, complex lipid-rich cell walls, and biofilm-forming capabilities.
Recombinant protein technology has emerged as a critical tool to address these hurdles. By cloning and expressing NTM-specific genes in heterologous systems (e.g., *E. coli*, yeast), researchers produce purified proteins to study virulence factors, host-pathogen interactions, and immune responses. For instance, recombinant antigens like Apa (alanine-proline-rich antigen) and Ag85 complex proteins have been leveraged to develop diagnostic assays and vaccine candidates. These proteins enable serological tests to differentiate NTM infections from tuberculosis, addressing a key clinical challenge.
Moreover, recombinant approaches facilitate targeted drug discovery. Enzymes involved in NTM’s unique metabolic pathways (e.g., mycobactin synthesis) or resistance mechanisms (e.g., macrolide-modifying enzymes) are expressed and purified for high-throughput inhibitor screening. Additionally, recombinant proteins aid in deciphering immune evasion strategies, such as modulation of cytokine signaling, informing immunotherapeutic strategies.
The scalability and cost-effectiveness of recombinant protein production also support rapid prototyping of subunit vaccines and monoclonal antibodies. As antibiotic resistance escalates, these strategies offer promising alternatives to conventional therapies. Continued advances in bioinformatics and structural biology further enhance the design of recombinant proteins, accelerating translational research against NTM infections.
In summary, recombinant protein technology underpins efforts to overcome NTM’s clinical and biological complexities, bridging gaps in diagnostics, therapeutics, and mechanistic understanding.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×