纯度 | > 90 % SDS-PAGE. |
种属 | Human |
靶点 | BLVRA |
Uniprot No | P53004 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-296aa |
氨基酸序列 | MNAEPERKFGVVVVGVGRAGSVRMRDLRNPHPSSAFLNLIGFVSRRELGSIDGVQQISLEDALSSQEVEVAYICSESSSHEDYIRQFLNAGKHVLVEYPMTLSLAAAQELWELAEQKGKVLHEEHVELLMEEFAFLKKEVVGKDLLKGSLLFTAGPLEEERFGFPAFSGISRLTWLVSLFGELSLVSATLEERKEDQYMKMTVCLETEKKSPLSWIEEKGPGLKRNRYLSFHFKSGSLENVPNVGVNKNIFLKDQNIFVQKLLGQFSEKELAAEKKRILHCLGLAEEIQKYCCSRK |
预测分子量 | 60.2kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于BLVRA(Biliverdin Reductase A)重组蛋白的模拟参考文献示例(注:以下内容为虚构示例,供参考格式,实际文献需通过学术数据库检索):
---
1. **文献名称**: "Expression and Purification of Recombinant Human Biliverdin Reductase A in *E. coli*"
**作者**: Smith J, et al.
**摘要**: 本研究报道了人源BLVRA基因在大肠杆菌中的高效表达及纯化方法。通过优化密码子和诱导条件,成功获得可溶性重组蛋白,并利用镍柱亲和层析纯化。酶活性分析显示重组BLVRA具有与天然酶相似的胆绿素还原能力,为后续功能研究提供了材料。
---
2. **文献名称**: "Structural Insights into Biliverdin Reductase A by X-ray Crystallography"
**作者**: Lee S, et al.
**摘要**: 通过X射线晶体学解析了重组BLVRA的3D结构(分辨率2.1 Å),揭示了其底物结合口袋的关键氨基酸残基及催化机制。研究还发现其C端结构域在NADPH辅因子结合中起重要作用,为设计靶向抑制剂提供了结构基础。
---
3. **文献名称**: "BLVRA Recombinant Protein Attenuates Oxidative Stress in Cellular Models"
**作者**: Chen L, et al.
**摘要**: 评估了重组BLVRA在细胞氧化损伤模型中的保护作用。实验表明,外源性添加重组BLVRA可显著降低ROS水平并提高细胞存活率,提示其在治疗氧化应激相关疾病(如神经退行性疾病)中的潜在应用价值。
---
4. **文献名称**: "Functional Characterization of BLVRA Mutants in Heme Metabolism"
**作者**: García R, et al.
**摘要**: 构建了BLVRA的多个点突变重组蛋白,发现D145A突变体完全丧失酶活性,而K123R突变体催化效率提高。研究阐明了BLVRA在血红素代谢通路中的关键残基,为相关遗传性疾病的机制解析提供依据。
---
**注意**:以上文献为示例,非真实存在。建议通过PubMed、Web of Science或Google Scholar检索真实文献,关键词:"Biliverdin Reductase A recombinant protein" 或 "BLVRA expression and purification"。
**Background of BLVRA Recombinant Protein**
Biliverdin reductase A (BLVRA) is a ubiquitously expressed enzyme critical to heme metabolism, primarily responsible for reducing biliverdin IXα—a byproduct of heme degradation—into bilirubin, a potent antioxidant. This NADPH-dependent reaction links BLVRA to cellular defense mechanisms against oxidative stress, inflammation, and apoptosis. BLVRA is encoded by the *BLVRA* gene in humans and shares evolutionary conservation across species, underscoring its biological significance. Dysregulation of BLVRA has been implicated in pathologies such as neurodegenerative disorders, cardiovascular diseases, and cancer, where oxidative imbalance plays a key role.
Recombinant BLVRA protein is engineered via molecular cloning, typically expressed in *E. coli* or mammalian systems to ensure proper folding and post-translational modifications. Its production enables detailed study of enzymatic kinetics, substrate interactions, and regulatory mechanisms in vitro. Researchers utilize BLVRA recombinant protein to explore its dual role as both an antioxidant enzyme and a signaling modulator, particularly in pathways involving mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB).
Additionally, BLVRA’s interaction with cellular targets, such as heme oxygenase-1 (HO-1), highlights its therapeutic potential. Recombinant BLVRA serves as a tool for drug discovery, aiding in the identification of inhibitors or enhancers to modulate oxidative stress-related diseases. Its application extends to diagnostic assays, biomarker research, and elucidating mechanisms in ischemia-reperfusion injury or chronic inflammation.
In summary, BLVRA recombinant protein bridges fundamental research and translational medicine, offering insights into redox biology and opportunities for therapeutic innovation. Its study remains pivotal in understanding cellular resilience to oxidative damage and disease pathogenesis.
×