纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | PRL |
Uniprot No | P01236 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-227aa |
氨基酸序列 | MNIKGSPWKGSLLLLLVSNLLLCQSVAPLPICPGGAARCQVTLRDLFDRAVVLSHYIHNLSSEMFSEFDKRYTHGRGFITKAINSCHTSSLATPEDKEQAQQMNQKDFLSLIVSILRSWNEPLYHLVTEVRGMQEAPEAILSKAVEIEEQTKRLLEGMELIVSQVHPETKENEIYPVWSGLPSLQMADEESRLSAYYNLLHCLRRDSHKIDNYLKLLKCRIIHNNNC |
预测分子量 | kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于PRL(催乳素)重组蛋白的3-4条参考文献示例,包含文献名称、作者及摘要概括:
---
1. **文献名称**:*"Expression and Functional Analysis of Recombinant Human Prolactin in Mammalian Cells"*
**作者**:Freeman, M.E., et al.
**摘要**:研究通过哺乳动物表达系统(如CHO细胞)成功表达重组人催乳素(rhPRL),验证其生物活性。实验表明,rhPRL能够激活乳腺上皮细胞中的STAT5信号通路,并促进细胞增殖,为研究PRL的生理功能提供工具。
---
2. **文献名称**:*"Recombinant PRL Enhances JAK2-STAT5 Signaling in Breast Cancer Models"*
**作者**:Smith, J.A., & Lee, C.
**摘要**:该文献探讨重组PRL在乳腺癌细胞中的作用,发现其通过激活JAK2-STAT5通路促进肿瘤细胞存活。研究利用纯化的重组PRL蛋白,揭示了其在癌症治疗中的潜在靶点价值。
---
3. **文献名称**:*"Optimization of Prolactin Production in E. coli for Structural Studies"*
**作者**:Zhang, Y., et al.
**摘要**:研究优化了大肠杆菌中PRL的重组表达条件,采用亲和层析和尺寸排阻色谱纯化,获得高纯度蛋白。通过晶体学分析其三维结构,为PRL受体相互作用的机制研究奠定基础。
---
4. **文献名称**:*"Immunomodulatory Effects of Recombinant PRL on T-Cell Function"*
**作者**:Wang, L., et al.
**摘要**:实验证明重组PRL可调节T细胞活性,抑制炎症因子(如IL-6、TNF-α)分泌。研究提示PRL在自身免疫疾病中的潜在应用,并强调重组蛋白在免疫学研究中的实用性。
---
注:以上文献为示例,实际引用时需核实真实来源及准确性(如PubMed或Google Scholar数据库)。如需具体论文,建议补充实验方向(如表达系统、疾病模型等)以精准检索。
Prolactin (PRL), a multifunctional pituitary hormone, plays crucial roles in diverse physiological processes, including lactation, reproduction, metabolism, and immune regulation. Structurally, it belongs to the helix-bundle cytokine family, sharing homology with growth hormone and placental lactogen. Human PRL is a 199-amino acid protein (23 kDa) with three intramolecular disulfide bonds. While primarily synthesized in lactotrophs, extrapituitary production occurs in tissues like the mammary gland and immune cells.
Recombinant PRL technology emerged to address limitations of animal-derived PRL, including batch variability and ethical concerns. Using genetic engineering, the PRL gene is cloned into expression vectors (commonly E. coli, yeast, or mammalian cells) for large-scale production. Bacterial systems offer high yield but lack post-translational modifications, while mammalian cells (e.g., CHO) produce glycosylated variants closer to native human PRL.
This recombinant approach enables precise control over protein structure, facilitating research on PRL receptor interactions and signaling pathways (JAK2-STAT5. MAPK). Therapeutic applications focus on lactation disorders and autoimmune diseases, with engineered variants showing potential in cancer therapy. Diagnostic uses include standardized assays for hyperprolactinemia detection.
Current challenges involve optimizing bioactivity through site-specific mutagenesis and improving production efficiency. Advanced expression systems like baculovirus-insect cell platforms are being explored to balance yield and post-translational accuracy. These developments position recombinant PRL as a vital tool for both basic research and biopharmaceutical innovation.
×