纯度 | >95%SDS-PAGE. |
种属 | Human |
靶点 | UBE2D4 |
Uniprot No | Q9Y2X8 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-147aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MALKRIQKEL TDLQRDPPAQ CSAGPVGDDL FHWQATIMGP NDSPYQGGVF FLTIHFPTDY PFKPPKVAFT TKIYHPNINS NGSICLDILR SQWSPALTVS KVLLSICSLL CDPNPDDPLV PEIAHTYKAD REKYNRLARE WTQKYAM MALKRIQKEL TDLQRDPPAQ SAGPVGDDL FHWQATIMGP NDSPYQGGVF FLTIHFPTDY PFKPPKVAFT |
预测分子量 | 19 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于UBE2D4重组蛋白的模拟参考文献示例(注:以下文献为假设性示例,实际文献可能需要通过学术数据库验证):
---
1. **文献名称**: "Characterization of Recombinant UBE2D4 in Ubiquitin-Proteasome Pathway"
**作者**: Smith J, et al. (2021)
**摘要**: 本研究成功表达并纯化了重组UBE2D4蛋白,通过体外泛素化实验证实其能够与多种RING型E3连接酶(如MDM2)协同作用,催化K48-linked多聚泛素链的形成,进而促进底物蛋白的蛋白酶体降解。研究还发现UBE2D4在癌细胞中异常高表达,可能与肿瘤发生相关。
2. **文献名称**: "Structural Insights into UBE2D4 Substrate Specificity by Cryo-EM"
**作者**: Zhang Y, et al. (2019)
**摘要**: 通过冷冻电镜解析了重组UBE2D4与E3连接酶RNF4复合物的结构,揭示了UBE2D4独特的N端螺旋结构域在底物识别中的关键作用。研究提出UBE2D4可能偏好磷酸化修饰的底物,为其在DNA损伤修复中的功能提供结构基础。
3. **文献名称**: "UBE2D4 Regulates Mitochondrial Protein Homeostasis via Parkin-Independent Mitophagy"
**作者**: Lee S, et al. (2020)
**摘要**: 研究发现重组UBE2D4蛋白可在Parkin缺失条件下,通过与其他E3连接酶(如ARIH1)结合,介导线粒体损伤相关蛋白的泛素化标记,激活非经典线粒体自噬通路。这一机制为神经退行性疾病的治疗提供了新靶点。
4. **文献名称**: "Functional Redundancy and Divergence in the UBE2D Enzyme Family"
**作者**: Patel R, et al. (2018)
**摘要**: 比较了UBE2D家族成员(包括UBE2D4)的酶活性和底物偏好。通过重组蛋白实验发现,UBE2D4对特定E3连接酶(如BRCA1)的协同效率显著低于其他成员,但其在睾丸组织中的高表达提示其可能在生殖细胞发育中具有独特作用。
---
**注意**:上述文献为示例性质,实际研究中UBE2D4的相关文献较少,建议通过PubMed或Google Scholar以关键词“UBE2D4 recombinant”“UBE2D4 ubiquitination”检索最新文献。真实研究可能更侧重其酶学特性、结构或疾病关联。
UBE2D4. a member of the ubiquitin-conjugating enzyme E2 family, plays a critical role in the ubiquitin-proteasome system (UPS), a primary pathway for targeted protein degradation in eukaryotic cells. This enzyme facilitates the transfer of ubiquitin molecules to substrate proteins, a process essential for regulating cellular processes such as protein turnover, DNA repair, cell cycle progression, and signal transduction. UBE2D4 (Ubiquitin-Conjugating Enzyme E2 D4) operates in tandem with E3 ubiquitin ligases, which confer substrate specificity, enabling the selective tagging of proteins for proteasomal degradation or functional modification.
Recombinant UBE2D4 protein is engineered through molecular cloning and heterologous expression systems, often in *E. coli* or mammalian cell lines, to produce high-purity, functional enzyme for research and therapeutic applications. Its recombinant form typically retains the conserved catalytic core structure, including the active-site cysteine residue critical for ubiquitin-thioester bond formation. Studies highlight its interaction with diverse E3 ligases, such as MDM2 and Parkin, implicating roles in p53 regulation and mitophagy, respectively. Dysregulation of UBE2D4 has been linked to diseases, including cancer and neurodegenerative disorders, making it a potential biomarker or therapeutic target.
Research applications of recombinant UBE2D4 include *in vitro* ubiquitination assays, mechanistic studies of UPS components, and drug discovery platforms aiming to modulate ubiquitination pathways. Its biochemical characterization (e.g., kinetics, substrate specificity) continues to refine our understanding of E2-E3 cooperation and ubiquitin chain topology. Despite overlapping functions with other E2 isoforms (e.g., UBE2D1-3), UBE2D4’s distinct expression patterns and regulatory mechanisms underscore its unique biological contributions, warranting further exploration in cellular homeostasis and disease contexts.
×