纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | TSTA3 |
Uniprot No | Q13630 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-321aa |
氨基酸序列 | MGSSHHHHHHSSGLVPRGSHMGEPQGSMRILVTGGSGLVGKAIQKVVADG AGLPGEDWVFVSSKDADLTDTAQTRALFEKVQPTHVIHLAAMVGGLFRNI KYNLDFWRKNVHMNDNVLHSAFEVGARKVVSCLSTCIFPDKTTYPIDETM IHNGPPHNSNFGYSYAKRMIDVQNRAYFQQYGCTFTAVIPTNVFGPHDNF NIEDGHVLPGLIHKVHLAKSSGSALTVWGTGNPRRQFIYSLDLAQLFIWV LREYNEVEPIILSVGEEDEVSIKEAAEAVVEAMDFHGEVTFDTTKSDGQF KKTASNSKLRTYLPDFRFTPFKQAVKETCAWFTDNYEQARK |
预测分子量 | 38 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于TSTA3重组蛋白的3篇参考文献示例(注:TSTA3相关文献较少,以下内容为模拟概括,仅供参考):
1. **文献名称**: "Expression and Purification of Recombinant TSTA3 in E. coli for Functional Studies"
**作者**: Zhang Y, et al.
**摘要**: 本研究报道了通过大肠杆菌系统高效表达TSTA3重组蛋白的优化方法,采用His标签纯化技术获得高纯度蛋白,并验证其酶活性,为后续功能研究提供基础。
2. **文献名称**: "Structural Characterization of TSTA3 Protein in Glycosylation Pathways"
**作者**: Lee S, Kim JH.
**摘要**: 通过X射线晶体学解析TSTA3重组蛋白的三维结构,揭示其参与糖基化修饰的关键功能域,为设计靶向抑制剂提供结构依据。
3. **文献名称**: "TSTA3 Recombinant Protein Enhances Antigen Presentation in Dendritic Cells"
**作者**: Wang X, et al.
**摘要**: 研究利用哺乳动物细胞表达系统制备TSTA3重组蛋白,证明其可增强树突状细胞的抗原呈递能力,提示其在免疫治疗中的潜在应用价值。
**备注**:实际文献检索建议使用PubMed、Google Scholar等平台,结合关键词“TSTA3 recombinant protein”或“TSTA3 expression”查询最新研究。若TSTA3(可能指糖基转移酶相关蛋白)研究有限,可扩展至其别名或相关家族蛋白的文献。
**Background of TSTA3 Recombinant Protein**
TSTA3. also known as GDP-L-fucose synthase, is a critical enzyme in the de novo biosynthesis of GDP-L-fucose, an essential nucleotide sugar required for protein fucosylation. This post-translational modification plays a pivotal role in various biological processes, including cell-cell adhesion, immune response, and signal transduction. The enzyme catalyzes the final two steps in the GDP-L-fucose pathway: the epimerization of GDP-D-mannose to GDP-L-galactose and its subsequent reduction to GDP-L-fucose. Dysregulation of fucosylation has been linked to diseases such as cancer, inflammation, and congenital disorders of glycosylation (CDGs), highlighting the biomedical relevance of TSTA3.
Recombinant TSTA3 protein is produced using heterologous expression systems (e.g., *E. coli* or mammalian cells*) to enable detailed functional and structural studies. Its purification often involves affinity chromatography tags (e.g., His-tag) to ensure high yield and purity. Researchers utilize this recombinant protein to investigate enzymatic mechanisms, screen for inhibitors or activators, and explore its role in fucose-dependent pathways.
In therapeutic contexts, TSTA3 is studied for its potential in modulating immune responses, as fucosylated glycans are crucial for leukocyte trafficking and pathogen recognition. Additionally, its involvement in cancer metastasis, where aberrant fucosylation promotes tumor cell invasion, makes it a target for diagnostic or therapeutic strategies.
Overall, TSTA3 recombinant protein serves as a vital tool for advancing glycobiology research and developing interventions for fucosylation-related disorders.
×