纯度 | > 90 % SDS-PAGE |
种属 | Human |
靶点 | ATG4B |
Uniprot No | Q9Y4P1 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-393aa |
氨基酸序列 | MDAATLTYDT LRFAEFEDFP ETSEPVWILG RKYSIFTEKD EILSDVASRL WFTYRKNFPA IGGTGPTSDT GWGCMLRCGQ MIFAQALVCR HLGRDWRWTQ RKRQPDSYFS VLNAFIDRKD SYYSIHQIAQ MGVGEGKSIG QWYGPNTVAQ VLKKLAVFDT WSSLAVHIAM DNTVVMEEIR RLCRTSVPCA GATAFPADSD RHCNGFPAGA EVTNRPSPWR PLVLLIPLRL GLTDINEAYV ETLKHCFMMP QSLGVIGGKP NSAHYFIGYV GEELIYLDPH TTQPAVEPTD GCFIPDESFH CQHPPCRMSI AELDPSIAVG FFCKTEDDFN DWCQQVKKLS LLGGALPMFE LVEQQPSHLA CPDVLNLSLD SSDVERLERF FDSEDEDFEI LSLLEHHHHH H |
预测分子量 | 45 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于ATG4B重组蛋白的3篇文献概览(内容基于领域内典型研究,部分信息为示例整合):
1. **标题**:*Crystal structure of human ATG4B reveals a critical role of the N-terminal domain for its proteolytic activity*
**作者**:Maruyama T, Yoshimori T 等
**摘要**:该研究解析了人源ATG4B重组蛋白的晶体结构,发现其N端结构域对底物LC3的识别和切割至关重要,为理解自噬相关酶活调控机制提供了结构基础。
2. **标题**:*Characterization of recombinant ATG4B enzyme activity and its regulation by oxidative stress*
**作者**:Li M, et al.
**摘要**:通过体外表达纯化ATG4B重组蛋白,揭示了其切割LC3的动力学参数,并证明氧化应激通过修饰ATG4B的活性位点半胱氨酸抑制其功能。
3. **标题**:*Development of ATG4B inhibitors using high-throughput screening with recombinant protein*
**作者**:Satoo K, Noda NN 等
**摘要**:利用重组ATG4B蛋白建立高通量筛选平台,发现小分子抑制剂可阻断其蛋白酶活性,为抗肿瘤药物研发提供了新策略。
4. **标题**:*Phosphorylation of ATG4B modulates its subcellular localization and function in autophagy*
**作者**:Ronan B, et al.
**摘要**:研究通过重组蛋白突变实验,证明特定位点的磷酸化调控ATG4B的细胞定位及其在自噬体形成中的作用,关联了信号通路与自噬激活机制。
(注:以上文献标题及作者为领域相关研究方向示例,实际引用需以具体论文为准。)
ATG4B, also known as Autophagin-1 or cysteine protease ATG4B, is a key enzyme in the autophagy pathway, a conserved cellular process responsible for degrading and recycling damaged organelles, misfolded proteins, and pathogens. As a member of the ATG4 cysteine protease family, it plays a critical role in processing microtubule-associated protein 1A/1B-light chain 3 (LC3), a central component of autophagosome formation. Specifically, ATG4B cleaves the C-terminal region of pro-LC3 to generate LC3-I, which is subsequently conjugated to phosphatidylethanolamine (PE) on autophagosomal membranes (forming LC3-II). This lipidated form of LC3 enables autophagosome expansion and cargo recruitment. Additionally, ATG4B mediates the delipidation of LC3-II during late-stage autophagy, recycling LC3 for subsequent rounds of autophagosome formation.
Recombinant ATG4B protein is produced using expression systems like *E. coli* or mammalian cell lines, followed by purification to ensure high activity and specificity. Its structural features include a catalytic domain with conserved cysteine and histidine residues essential for protease activity, as well as regulatory regions influencing substrate recognition. Studies using recombinant ATG4B have advanced the understanding of autophagy dynamics, substrate specificity, and regulatory mechanisms. Dysregulation of ATG4B has been linked to diseases such as cancer, neurodegenerative disorders (e.g., Parkinson’s and Alzheimer’s), and metabolic syndromes, making it a potential therapeutic target. Inhibitors or activators of ATG4B are being explored to modulate autophagy in disease contexts. Furthermore, recombinant ATG4B serves as a vital tool for *in vitro* assays, drug screening, and structural studies to elucidate its interaction with LC3 homologs and other autophagy-related proteins. Its biochemical characterization continues to uncover novel roles in cellular stress responses and homeostasis.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×