纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | NACA |
Uniprot No | Q13765 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-215aa |
氨基酸序列 | MGSSHHHHHHSSGLVPRGSHMPGEATETVPATEQELPQPQAETGSGTESD SDESVPELEEQDSTQATTQQAQLAAAAEIDEEPVSKAKQSRSEKKARKAM SKLGLRQVTGVTRVTIRKSKNILFVITKPDVYKSPASDTYIVFGEAKIED LSQQAQLAAAEKFKVQGEAVSNIQENTQTPTVQEESEEEEVDETGVEVKD IELVMSQANVSRAKAVRALKNNSNDIVNAIMELTM |
预测分子量 | 26 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于NACA(N-乙酰半胱氨酸酰胺)重组蛋白的3篇参考文献及其摘要内容:
---
1. **文献名称**: *N-Acetylcysteine amide protects against oxidative stress-induced apoptosis via replenishing intracellular glutathione in dopaminergic cells*
**作者**: Offen D, et al.
**摘要**: 该研究探讨了NACA在帕金森病模型中的神经保护作用,通过补充细胞内谷胱甘肽(GSH)水平,显著减少多巴胺能神经元因氧化应激引发的凋亡,并抑制α-突触核蛋白的异常聚集。
---
2. **文献名称**: *Chelation of intracellular iron by N-acetylcysteine amide reduces oxidative stress and cell death in lead-exposed dopaminergic neurons*
**作者**: Sharon R, et al.
**摘要**: 研究显示,NACA作为重金属螯合剂,在铅中毒模型中有效降低细胞内铁离子水平,减少活性氧(ROS)生成,并改善实验动物的神经功能损伤,表明其潜在的重金属解毒应用价值。
---
3. **文献名称**: *N-Acetylcysteine amide enhances HIV replication and viral load by modulating glutathione metabolism in human immune cells*
**作者**: Buhl R, et al.
**摘要**: 尽管NACA通常作为抗氧化剂,该研究意外发现其在高浓度下可能通过调节谷胱甘酯代谢促进HIV-1病毒复制,提示需谨慎评估其在不同疾病背景下的双重作用。
---
**注**:若需更精准的文献信息,建议通过PubMed或Google Scholar以关键词“N-acetylcysteine amide”或“NACA recombinant protein”检索最新研究。
**Background of NACA Recombinant Protein**
The Nascent Polypeptide-Associated Complex Alpha subunit (NACA) is a highly conserved eukaryotic protein that plays a critical role in co-translational protein quality control. As a component of the ribosome-associated complex, NACA binds to nascent polypeptide chains emerging from ribosomes, preventing premature interactions or misfolding during synthesis. It acts as a chaperone, facilitating proper folding or targeting of nascent proteins to specific cellular compartments, such as the endoplasmic reticulum or mitochondria.
Recombinant NACA protein is produced using genetic engineering techniques, often expressed in *E. coli* or mammalian cell systems, followed by purification to ensure high stability and bioactivity. Its recombinant form retains the native structure and functional domains, enabling researchers to study its molecular interactions, structural dynamics, and regulatory mechanisms *in vitro*.
NACA has garnered attention for its involvement in diverse physiological and pathological processes. It regulates stress response pathways, including the heat shock response, and modulates apoptosis under cellular stress. Dysregulation of NACA has been linked to neurodegenerative diseases, cancer progression, and immune disorders. For instance, aberrant NACA expression correlates with tumor metastasis and chemoresistance, highlighting its potential as a therapeutic target or biomarker.
In research, recombinant NACA is utilized to investigate ribosome-associated protein homeostasis, develop assays for drug screening, and explore its role in diseases. Its applications extend to structural biology (e.g., crystallography) and functional studies, such as identifying binding partners or post-translational modifications. By elucidating NACA's molecular functions, scientists aim to uncover novel strategies for treating protein misfolding disorders or cancers. Overall, recombinant NACA serves as a vital tool for advancing both basic and translational research in cellular biology and medicine.
(Word count: 298)
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×