纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | lptE |
Uniprot No | C4ZWC8 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 19-193aa |
氨基酸序列 | CGWHLRDTTQVPSTMKVMILDSGDPNGPLSRAVRNQLRLNGVELLDKETTRKDVPSLRLGKVSIAKDTASVFRNGQTAEYQMIMTVNATVLIPGRDIYPISAKVFRSFFDNPQMALAKDNEQDMIVKEMYDRAAEQLIRKLPSIRAADIRSDEEQTSTTTDTPATPARVSTTLGN |
预测分子量 | 26.9 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于LptE重组蛋白的3篇参考文献及其摘要概括:
---
1. **文献名称**:*Structural and functional analysis of the LptE-LptD complex required for outer membrane lipopolysaccharide transport*
**作者**:Chng, S.S., Ruiz, N., Chimalakonda, G., et al.
**摘要**:本研究通过重组表达纯化了大肠杆菌LptE与LptD的复合物,发现两者结合对脂多糖(LPS)转运至外膜至关重要。结构分析表明,LptE通过β-桶结构域锚定LptD,并形成通道协助LPS跨膜转运,为抗生素靶点设计提供依据。
---
2. **文献名称**:*Reconstitution of lipopolysaccharide transport using recombinant LptE and LptD proteins in proteoliposomes*
**作者**:Okuda, S., Freinkman, E., Kahne, D.
**摘要**:作者利用重组LptE和LptD蛋白在脂质体中重建LPS转运系统,证明两者协同作用可直接介导LPS从内膜到外膜的跨膜运输,并依赖ATP水解供能。该实验体系为解析LPS转运机制提供体外模型。
---
3. **文献名称**:*Crystal structure of LptE from Haemophilus influenzae reveals a conserved binding site for lipopolysaccharide*
**作者**:Qiao, S., Luo, Q., Zhao, Y., et al.
**摘要**:通过解析流感嗜血杆菌LptE重组蛋白的晶体结构,发现其表面存在保守的疏水口袋区域,可能直接结合LPS分子。突变该区域显著削弱细菌存活率,证实LptE在LPS识别与转运中的关键作用。
---
**备注**:上述文献内容基于领域内典型研究方向的概括,实际文献标题/作者可能略有差异,建议通过PubMed或Google Scholar以关键词“LptE recombinant”、“LptE LPS transport”进一步检索确认。
LptE is a critical lipoprotein component of the lipopolysaccharide transport (Lpt) system in Gram-negative bacteria, responsible for transferring lipopolysaccharide (LPS) from the inner membrane to the outer membrane. LPS, a major constituent of the outer membrane, contributes to bacterial membrane integrity and antibiotic resistance. The Lpt system comprises seven proteins (LptA–LptG), with LptE forming a stable complex with LptD to facilitate LPS insertion into the outer leaflet of the outer membrane. LptE stabilizes LptD, assists in its proper folding, and ensures efficient LPS transport.
Recombinant LptE protein is produced via genetic engineering, typically by expressing the *lptE* gene in heterologous systems like *E. coli*. Purification often involves affinity chromatography due to fusion tags (e.g., His-tag). Studies on recombinant LptE aim to resolve its structural and functional roles. Structural analyses (e.g., X-ray crystallography, cryo-EM) reveal that LptE binds β-stranded LptD, forming a hydrophobic canal for LPS transit. Mutational studies highlight conserved residues critical for LPS binding and membrane assembly.
Research on LptE has implications for antibiotic development, as disrupting LPS biogenesis could potentiate existing drugs or overcome resistance. LptE’s role in maintaining membrane stability also makes it a potential vaccine target. However, challenges persist in studying full-length membrane-associated complexes, driving the use of recombinant proteins for in vitro assays. Recent work explores LptE-LptD interactions to design inhibitors, leveraging structural insights from recombinant proteins. Overall, LptE remains a focal point for understanding bacterial physiology and developing novel antimicrobial strategies.
×