纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | mtnN |
Uniprot No | A7ZWA7 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-232aa |
氨基酸序列 | MKIGIIGAMEEEVTLLRDKIEKRQTISLGGCEIYTGQLNGTEVALLKSGIGKVAAALGATLLLEHCKPDVIINTGSAGGLAPTLKVGDIVVSDEARYHDADVTAFGYEYGQLPGCPAGFKADDKLIAAAEACIAELNLNAVRGLIVSGDAFINGSVGLAKIRHNFPQAIAVEMEATAIAHVCHNFNVPFVVVRAISDVADQQSHLSFDEFLAVAAKQSSLMVESLVQKLAHG |
预测分子量 | 31.8 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于mtnN重组蛋白的假设性参考文献示例(仅供格式参考):
1. **文献名称**:重组mtnN蛋白的异源表达及其酶学性质研究
**作者**:Zhang Y, et al.
**摘要**:本研究成功在大肠杆菌中表达并纯化mtnN重组蛋白,证实其具有甲基硫代腺苷(MTA)水解活性,为甲硫氨酸代谢途径的酶学机制提供了新见解。
2. **文献名称**:Structural and functional analysis of mtnN in bacterial methionine salvage pathway
**作者**:Smith J, et al.
**摘要**:通过X射线晶体学解析mtnN重组蛋白的三维结构,结合突变实验揭示了其催化MTA分解的关键氨基酸残基及作用机制。
3. **文献名称**:Enhancing methanethiol production via engineered mtnN overexpression
**作者**:Wang L, et al.
**摘要**:利用重组mtnN蛋白在枯草芽孢杆菌中的过表达,显著提升了甲硫醇的生物合成效率,为工业发酵优化提供了策略。
4. **文献名称**:Comparative genomics and recombinant mtnN activity across prokaryotic species
**作者**:Kim H, et al.
**摘要**:比较不同原核生物来源的mtnN基因序列,通过重组蛋白表达验证其底物特异性差异,探讨进化适应性对酶功能的影响。
注:以上文献为示例性内容,实际研究中需查询具体数据库获取真实文献。
**Background of MtnN Recombinant Protein**
MtnN is a key enzyme involved in the methionine salvage pathway (MSP), a conserved metabolic route that recovers methionine from methylthioribose (MTR), a byproduct of polyamine biosynthesis. This pathway is critical for maintaining sulfur homeostasis and optimizing resource utilization in prokaryotes and eukaryotes. MtnN, specifically identified in bacteria such as *Bacillus subtilis* and *Escherichia coli*, catalyzes the phosphorylation of MTR to form MTR-1-phosphate (MTR-1-P), a pivotal step preceding ring-opening and eventual conversion to methionine.
The recombinant MtnN protein is engineered via heterologous expression in host systems like *E. coli*, enabling large-scale production for biochemical and structural studies. Cloning the *mtnN* gene into expression vectors with affinity tags (e.g., His-tag) facilitates purification, yielding high-purity, soluble protein. Studies on recombinant MtnN have elucidated its enzymatic kinetics, substrate specificity, and dependence on ATP as a phosphate donor. Structural analyses reveal a conserved ribokinase-like fold, with active-site residues critical for MTR and ATP binding.
Research on MtnN holds biotechnological and biomedical significance. In industrial applications, engineering the MSP could enhance methionine production in microbial cell factories. In drug development, targeting MtnN may offer antibacterial strategies, as disrupting the MSP compromises bacterial survival under sulfur-limiting conditions. Furthermore, insights into MtnN’s mechanism may inform analogous pathways in plants or parasites, expanding its relevance to agriculture or antiparasitic therapies.
Overall, MtnN recombinant protein serves as a vital tool for exploring sulfur metabolism, enzyme evolution, and potential therapeutic applications, bridging fundamental biochemistry with practical innovation.
×