纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | nad2 |
Uniprot No | A0A075XDS2 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 32-300aa |
氨基酸序列 | GMMSKELKKNSMTSSPSMFYLLVQLPASIIFLIFMTSNPNSKTIMCMGILVMMIKSGAFPFHMWYLKTLGLLNMSSPSMKMIMTWQKIIPFFILSYFKLWELLVILGLMNMLIPLVKMSKLSSMKSILVLSSINNNSWFMMSSLLSFMILSLYFMIYSLSLLITMSFLKSVKKKSFILKENPMETMLVIMNLGGIPPSVMFLGKMIIFTLLVKMNLPKEIMMLMLMMACYFMYHYLWCTFPYLMNTPLKSQNQVMNKNTTFMLTLMMLL |
预测分子量 | 32.7 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于nad2(ND2)重组蛋白的3篇参考文献示例,基于现有研究领域推测的内容(注:部分信息为模拟,建议通过学术数据库核实):
1. **标题**: "Heterologous Expression and Functional Characterization of Mitochondrial NADH Dehydrogenase Subunit 2 in Yeast"
**作者**: Zhang L, et al.
**摘要**: 本研究在大肠杆菌和酵母系统中成功表达了重组线粒体ND2蛋白,分析了其与复合物I其他亚基的相互作用,证实了ND2在电子传递链中的关键作用,并探讨了其突变对氧化磷酸化的影响。
2. **标题**: "Crystallographic Analysis of Recombinant Human ND2 Reveals Structural Insights into Mitochondrial Complex I Assembly"
**作者**: Smith J, Patel R.
**摘要**: 通过X射线晶体学解析了重组人源ND2蛋白的三维结构,揭示了其与复合物I其他亚基的结合位点,为理解复合物I功能障碍相关疾病的分子机制提供了结构基础。
3. **标题**: "Recombinant ND2 Protein as a Biomarker for Parkinson’s Disease: Expression and Immunoreactivity Studies"
**作者**: Kim H, et al.
**摘要**: 研究利用昆虫细胞系统表达重组ND2蛋白,发现帕金森患者血清中抗ND2抗体水平显著升高,提示ND2可能作为神经退行性疾病的潜在生物标志物。
**注意**:以上文献为示例性质,实际研究中请通过PubMed或Web of Science以“ND2 recombinant protein”、“mitochondrial complex I subunit expression”等关键词检索最新文献。若需具体文献,请提供更多研究背景或修正术语。
**Background of NAD2 Recombinant Protein**
NAD2 (NADH dehydrogenase subunit 2) is a critical component of mitochondrial Complex I (NADH:ubiquinone oxidoreductase), a key enzyme in the electron transport chain (ETC) responsible for oxidative phosphorylation. Encoded by the mitochondrial DNA (mtDNA), NAD2 contributes to the structural and functional integrity of Complex I, which catalyzes the transfer of electrons from NADH to ubiquinone, coupled with proton translocation across the inner mitochondrial membrane. This process drives ATP synthesis and is essential for cellular energy production. Mutations or deficiencies in NAD2 are linked to mitochondrial disorders, neurodegenerative diseases, and metabolic dysfunction, underscoring its biological significance.
Recombinant NAD2 protein is engineered using heterologous expression systems (e.g., *E. coli*, yeast, or mammalian cells*) to study its role in health and disease. By cloning the NAD2 gene into expression vectors, researchers produce purified, functional protein for *in vitro* assays, structural studies (e.g., X-ray crystallography or cryo-EM), and functional analyses. Recombinant NAD2 enables investigations into Complex I assembly, electron transfer mechanisms, and the molecular basis of pathogenic mutations. It also serves as a tool for drug screening targeting mitochondrial dysfunction.
Challenges in producing NAD2 include its hydrophobic nature, membrane-associated properties, and dependence on mitochondrial-specific chaperones for proper folding. Advances in protein engineering, such as fusion tags or codon optimization, have improved solubility and yield. Studies leveraging recombinant NAD2 continue to enhance our understanding of mitochondrial biology, offering potential therapeutic strategies for energy metabolism-related disorders.
×