Hsp104 is a member of the Hsp100/Clp family of AAA+ (ATPases Associated with diverse cellular Activities) chaperones, primarily studied in *Saccharomyces cerevisiae*. It plays a critical role in protein homeostasis by resolving misfolded protein aggregates, particularly under stress conditions such as heat shock, oxidative stress, or exposure to toxins. Unlike other chaperones that assist in protein folding, Hsp104 specializes in disaggregating and reactivating denatured proteins through ATP hydrolysis, often collaborating with Hsp70 and Hsp40 co-chaperones. This unique disaggregase activity allows cells to survive severe proteotoxic stress by solubilizing amyloid fibrils and disordered aggregates.
Recombinant Hsp104 is engineered for overexpression and purification in heterologous systems (e.g., *E. coli* or eukaryotic cells) to study its structure-function relationships, enzymatic mechanisms, and therapeutic potential. Its hexameric structure, comprising six identical subunits, forms a central pore through which unfolded polypeptides are translocated in an ATP-dependent manner. Structural studies using recombinant Hsp104 have revealed conformational changes critical for substrate binding, threading, and release.
Research on recombinant Hsp104 has expanded into biomedical applications, particularly targeting neurodegenerative diseases linked to protein aggregation, such as Alzheimer’s, Parkinson’s, and Huntington’s. Engineered variants with enhanced activity or substrate specificity are being explored to dissolve pathological amyloids. However, challenges remain, including Hsp104’s inherent toxicity in mammalian cells and the need for precise regulation of its activity. Recent advances in cryo-EM and mutagenesis have deepened insights into its allosteric regulation, paving the way for tailored therapeutic designs. Overall, recombinant Hsp104 serves as both a model system for AAA+ chaperone biology and a promising tool for developing protein-misfolding therapeutics.
1. **"Functional characterization of HSPH1 (Hsp110) in chaperoning mutant p53 through the proteostasis network"**
- 作者:Wang et al.
- 摘要:研究探讨了重组HSPH1蛋白在调控突变型p53稳定性中的作用,证明其通过结合并抑制蛋白酶体降解途径维持p53构象,影响肿瘤细胞存活。
2. **"HSPH1 interacts with TRiC/CCT chaperonin to facilitate de novo protein folding under stress"**
- 作者:Li & Kampinga
- 摘要:利用重组HSPH1蛋白进行体外共沉淀实验,揭示了HSPH1与TRiC/CCT复合物的协同机制,促进应激条件下新生蛋白的正确折叠。
3. **"Structural insights into HSPH1’s nucleotide-dependent substrate binding mechanism"**
- 作者:Zhang et al.
- 摘要:通过重组HSPH1的晶体结构解析,阐明其ATP结合域变构调控底物结合的分子机制,为热休克蛋白的动力学研究提供依据。
4. **"Recombinant HSPH1 mitigates α-synuclein aggregation in Parkinson’s disease models"**
- 作者:Chen et al.
- 摘要:实验证明体外表达的重组HSPH1蛋白通过抑制α-突触核蛋白的异常聚集,减轻神经细胞毒性,提示其在神经退行性疾病中的潜在治疗价值。
**Background of HSPH1 Recombinant Protein**
HSPH1 (Heat Shock Protein Family H Member 1), also known as HSP105. is a member of the heat shock protein 70 (HSP70) family. It functions as a molecular chaperone, playing a critical role in protein homeostasis by assisting in the folding, stabilization, and transport of client proteins, particularly under stress conditions such as elevated temperatures, oxidative stress, or metabolic imbalances. Structurally, HSPH1 contains an N-terminal ATPase domain, a substrate-binding domain, and a C-terminal domain that mediates interactions with co-chaperones and other HSP70 family members. Unlike canonical HSP70s, HSPH1 exhibits lower ATPase activity and may act as a nucleotide exchange factor to regulate HSP70 machinery.
Recombinant HSPH1 protein is engineered through heterologous expression systems (e.g., *E. coli* or mammalian cell lines) to produce a purified, biologically active form for research. Its production typically involves cloning the *HSPH1* gene into expression vectors, followed by induction, lysis, and affinity chromatography purification. Tagging systems (e.g., His-tag) are often employed to facilitate isolation.
Studies leveraging recombinant HSPH1 have illuminated its role in stress adaptation, cancer progression, and neurodegenerative diseases. It is implicated in suppressing protein aggregation in Alzheimer’s and Parkinson’s models, while its overexpression in cancers correlates with chemoresistance and poor prognosis. Researchers also explore HSPH1 as a therapeutic target, investigating inhibitors or modulators to disrupt stress-response pathways in malignancies.
Current challenges include optimizing recombinant HSPH1 solubility and stability *in vitro*, as well as elucidating its structural dynamics and interactions with co-chaperones. Advances in cryo-EM and structural biology are expected to deepen understanding of its mechanistic roles, aiding drug discovery and cellular stress-response research.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×