纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | NSS |
Uniprot No | P12792 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-267aa |
氨基酸序列 | MINNNMMNSQYMFDYPAINIDVRCHRLLSSVSYVAYNKFHTHDVSTYEHCEIPLEKLRLGFGRRNSLADFYSLGELPASWGPACYFSSVKPMMYTFQGMASDLSRFDLTSFSRKGLPNVLKALSWPLGIPDCEIFSICSDRFVRGLQTRDQLMSYILRMGDSHSLDECIVQAHKKILQEARRLGLSDEHYNGYDLFREIGSLVCLRLINAEPFDTASSGEALDVRTVIRSYRASDPSTGLTEYGNSLWTPIHSHVDENDESSSDSDF |
预测分子量 | 37.8 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于NSS(神经递质钠共转运体)重组蛋白的重要文献,涵盖结构解析、功能机制及重组表达技术:
---
1. **文献名称**: *X-ray structure of dopamine transporter elucidates antidepressant mechanism*
**作者**: Penmatsa, A., Wang, K.H., Gouaux, E.
**摘要**: 通过X射线晶体学解析果蝇多巴胺转运体(dDAT)的三维结构,揭示了抗抑郁药物(如可卡因类似物)的结合位点,阐明了钠离子依赖性底物转运的分子机制。
2. **文献名称**: *Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters*
**作者**: Yamashita, A., Singh, S.K., Kawate, T., et al.
**摘要**: 解析了细菌来源的亮氨酸转运体(LeuT)的高分辨率结构,为NSS家族蛋白的构象变化提供了模型,揭示了钠离子/氯离子协同转运及抑制剂结合的分子基础。
3. **文献名称**: *Conformational dynamics of a neurotransmitter:sodium symporter in a lipid bilayer*
**作者**: Søgaard, L.B.M., Mortensen, J.S., Hariharan, P., et al.
**摘要**: 利用重组表达的人源血清素转运体(SERT)结合冷冻电镜技术,研究其在脂双分子层环境中的构象动态,阐明转运循环中从外向开口到内向开口的转变机制。
4. **文献名称**: *Single-molecule dynamics of gating in a neurotransmitter transporter*
**作者**: Zhao, Y., Terry, D., Shi, L., et al.
**摘要**: 通过重组表达的人源γ-氨基丁酸转运体(GAT1),结合单分子荧光技术,揭示了NSS蛋白门控机制的时间分辨率动态过程及脂质环境对功能调控的影响。
---
**注**:NSS家族包括多巴胺(DAT)、血清素(SERT)、GABA等转运体,上述文献聚焦结构生物学与重组蛋白技术,为药物设计及转运机制研究提供关键依据。如需具体DOI或年份,可进一步补充。
**Background of NSS Recombinant Proteins**
Neurotransmitter Sodium Symporters (NSS) are a critical family of membrane transport proteins responsible for the reuptake of neurotransmitters like serotonin, dopamine, and norepinephrine from synaptic spaces, thereby regulating neuronal signaling. Dysregulation of NSS function is linked to neurological and psychiatric disorders, including depression, anxiety, and Parkinson’s disease. Studying these proteins, however, is challenging due to their structural complexity, low natural abundance, and instability outside native membranes.
Recombinant protein technology has revolutionized NSS research by enabling the production of purified, functional NSS proteins in heterologous systems like *E. coli*, insect cells, or mammalian cell lines. This involves cloning NSS genes into expression vectors, optimizing conditions for protein folding and stability, and employing affinity tags for purification. The development of NSS recombinant proteins has facilitated high-resolution structural studies (e.g., X-ray crystallography, cryo-EM), revealing mechanisms of substrate transport, ion coupling, and ligand binding. Notably, the solved structures of bacterial homologs (e.g., LeuT) and human transporters (e.g., SERT, DAT) have provided insights into drug-target interactions, aiding the design of antidepressants, stimulants, and addiction therapeutics.
Moreover, recombinant NSS proteins are vital for *in vitro* drug screening and functional assays, allowing researchers to study inhibitors (e.g., SSRIs, cocaine analogs) and allosteric modulators. Challenges remain, such as preserving post-translational modifications and native conformations during *in vitro* expression. Nonetheless, advancements in membrane protein engineering and solubilization techniques continue to enhance the utility of NSS recombinant proteins in both basic research and pharmaceutical development. Their study remains pivotal for understanding neurotransmission and developing next-generation neuropsychiatric treatments.
×