首页 / 产品 / 蛋白 / 活性蛋白

Recombinant eta protein

  • 中文名: 二酰甘油激酶η(eta)重组蛋白
  • 别    名: eta;Diacylglycerol kinase eta
货号: PA2000-4925
Price: ¥询价
数量:
大包装询价

产品详情

纯度>90%SDS-PAGE.
种属Human
靶点eta
Uniprot No P11439
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间413-638aa
氨基酸序列ALLERNYPTGAEFLGDGGDISFSTRGTQNWTVERLLQAHRQLEERGYVFVGYHGTFLEAAQSIVFGGVRARSQDLDAIWRGFYIAGDPALAYGYAQDQEPDARGRIRNGALLRVYVPRSSLPGFYRTGLTLAAPEAAGEVERLIGHPLPLRLDAITGPEEEGGRLETILGWPLAERTVVIPSAIPTDPRNVGGDLDPSSIPDKEQAISALPDYASQPGKPPREDLK
预测分子量39.9 kDa
蛋白标签His tag N-Terminus
缓冲液PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300.
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

参考文献

以下是关于ETA重组蛋白的3篇示例参考文献(内容为模拟生成,建议通过学术数据库核实具体文献):

1. **标题**: *"Expression and Purification of Recombinant E. coli Heat-Labile Enterotoxin A Subunit for Mucosal Adjuvant Development"*

**作者**: Smith J, et al.

**摘要**: 研究报道了ETA亚基的重组表达和纯化工艺,验证其作为黏膜疫苗佐剂的潜力,证明其可增强模型抗原的免疫应答。

2. **标题**: *"Structural Analysis of LT-A Mutants for Enhanced Stability and Immune Modulation"*

**作者**: Lee H, et al.

**摘要**: 通过点突变改造ETA蛋白结构,提高其热稳定性并降低毒性,实验表明突变体在小鼠模型中保留佐剂活性且安全性更优。

3. **标题**: *"Mechanism of LT-A as a Mucosal Delivery Enhancer in DNA Vaccines"*

**作者**: Wang Y, et al.

**摘要**: 探讨ETA蛋白通过结合M细胞表面受体促进DNA疫苗递送的分子机制,证明其可显著提升呼吸道疫苗接种效率。

---

**提示**:实际文献可通过PubMed、Web of Science等平台,以关键词 **"recombinant LT-A subunit"** 或 **"heat-labile enterotoxin adjuvant"** 检索。建议结合具体研究方向(如结构、应用或机制)筛选高引论文。

背景信息

**Background of ETA Recombinant Protein**

The *Pseudomonas aeruginosa* exotoxin A (ETA) is a potent bacterial toxin historically studied for its role in disrupting protein synthesis in eukaryotic cells, leading to cell death. ETA exerts its toxicity through ADP-ribosylation of elongation factor 2 (EF-2), halting translation and inducing apoptosis. Structurally, it comprises three functional domains: a receptor-binding domain (domain I), a translocation domain (domain II), and the catalytic ADP-ribosyltransferase domain (domain III).

Recombinant ETA (rETA) refers to engineered versions of this toxin, modified to retain its cell-killing potential while reducing systemic toxicity. Researchers have leveraged genetic engineering to delete or alter domain I, which naturally binds ubiquitously expressed cell-surface receptors, to minimize off-target effects. Instead, domain I is often replaced with targeting moieties (e.g., antibodies, ligands, or cytokines) to direct the toxin specifically to diseased cells, such as cancer cells overexpressing certain receptors.

This targeted approach forms the basis of immunotoxins—fusion proteins combining rETA’s cytotoxic domain with a targeting component. For example, FDA-approved immunotoxins like Tagraxofusp (targeting CD123) utilize modified ETA derivatives to treat hematologic malignancies. Beyond oncology, rETA-based tools are explored in autoimmune diseases and infections, capitalizing on their ability to selectively eliminate pathogenic cells.

Current research focuses on optimizing rETA’s pharmacokinetics, stability, and immunogenicity. Challenges include mitigating immune responses against the bacterial protein and enhancing tumor penetration. Advances in protein engineering, such as deimmunization strategies and nanoparticle-based delivery systems, aim to broaden therapeutic applications. Overall, rETA exemplifies how pathogenic virulence factors can be repurposed into precision therapeutics, highlighting the intersection of microbiology, oncology, and biotechnology.

客户数据及评论

折叠内容

大包装询价

×