首页 / 产品 / 蛋白 / 活性蛋白

Recombinant E. coli GrpE protein

  • 中文名: 大肠杆菌(GrpE)重组蛋白
  • 别    名: GRPEL1;GREPEL1;GrpE protein homolog 1, mitochondrial
货号: PA1000-1336
Price: ¥询价
数量:
大包装询价

产品详情

纯度>90%SDS-PAGE.
种属Escherichia coli
靶点GrpE
Uniprot No
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间全长
氨基酸序列MSSKEQKTPE GQAPEEIIMD QHEEIEAVEP EASAEQVDPR DEKIANLEAQ LAEAQTRERD GILRVKAEME NLRRRTELDI EKAHKFALEK FINELLPVID SLDRALEVAD KANPDMSAMV EGIELTLKSM LDVVRKFGVE VIAETNVPLD PNVHQAIAMV ESDDVAPGNV LGIMQKGYTL NGRTIRAAMV TVAKAKA
预测分子量
蛋白标签His tag N-Terminus
缓冲液冻干粉
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.


参考文献

以下是关于GrpE重组蛋白的3-4条简要参考文献信息:

1. **文献名称**: *"GrpE, a nucleotide exchange factor for DnaK, acts as a heat-shock sensor in Escherichia coli"*

**作者**: Gelinas et al. (2002)

**摘要**: 研究揭示了GrpE作为热休克传感器的作用,通过调控其与DnaK的相互作用,促进ATP/ADP交换,从而在高温应激下增强大肠杆菌的蛋白质折叠能力。

2. **文献名称**: *"Structural analysis of GrpE and its role in regulating the Hsp70 chaperone cycle"*

**作者**: Harrison et al. (1997)

**摘要**: 通过X射线晶体学解析GrpE蛋白的二聚体结构,阐明其通过构象变化促进Hsp70(DnaK)释放ADP的分子机制,为分子伴侣功能提供结构基础。

3. **文献名称**: *"Recombinant GrpE enhances solubility of heterologous proteins in E. coli by modulating Hsp70 activity"*

**作者**: Liu et al. (2010)

**摘要**: 报道重组GrpE与DnaK共表达可显著提高外源蛋白在大肠杆菌中的可溶性,提出其在重组蛋白表达系统中的潜在应用价值。

4. **文献名称**: *"Functional characterization of GrpE mutants in substrate binding and nucleotide exchange"*

**作者**: Brehmer et al. (2001)

**摘要**: 通过定点突变研究GrpE的关键氨基酸残基,揭示其与DnaK结合及调控ATP酶活性的功能域,为设计人工分子伴侣提供依据。

注:以上文献信息为模拟示例,实际引用时需核实具体文献内容及作者年份。

背景信息

GrpE is a critical component of the Hsp70 molecular chaperone system, primarily known for its role in nucleotide exchange within the chaperone cycle. Originally identified in *Escherichia coli* as part of the DnaK-DnaJ-GrpE chaperone triad, GrpE functions as a nucleotide exchange factor (NEF) that accelerates the release of ADP from the Hsp70 homolog DnaK, enabling ATP rebinding and substrate protein release. This activity is essential for the ATP-dependent substrate binding-release cycle, which facilitates protein folding, translocation, and stress response under physiological or stress conditions.

Structurally, GrpE forms a homodimer with a distinctive asymmetric α-helical "arm" that interacts with the ATPase domain of DnaK. Its conserved N-terminal domain binds to DnaK’s nucleotide-binding cleft, while the C-terminal domain stabilizes the complex. Beyond bacteria, GrpE homologs exist in mitochondria (e.g., human GRPEL1/2) and chloroplasts, underscoring its evolutionary importance in cellular proteostasis. However, eukaryotic cytosolic Hsp70 systems employ distinct NEFs like BAG proteins, highlighting functional diversification.

Recombinant GrpE proteins are widely produced in *E. coli* expression systems for biochemical and structural studies. These engineered variants enable detailed investigations into chaperone mechanisms, protein-protein interactions, and allosteric regulation. Research on GrpE has also provided insights into diseases linked to protein misfolding, such as neurodegeneration and cancer, where chaperone dysfunction is implicated. Additionally, GrpE’s role in bacterial stress adaptation has spurred interest in antimicrobial strategies targeting chaperone networks. Its simplicity and efficiency in nucleotide exchange make GrpE a model system for understanding broader NEF functions in Hsp70 biology.

客户数据及评论

折叠内容

大包装询价

×