纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | MTOR |
Uniprot No | P42345 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1521-1620aa |
氨基酸序列 | WGLGQWDSMEEYTCMIPRDTHDGAFYRAVLALHQDLFSLAQQCIDKARDL LDAELTAMAGESYSRAYGAMVSCHMLSELEEVIQYKLVPERREIIRQIWW |
预测分子量 | 37 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于MTOR重组蛋白研究的参考文献概览:
1. **"Structure of the human mTOR complex I and its implications for rapamycin inhibition"**
- 作者:Y. Xiong, D. M. Sabatini 等
- 摘要:该研究解析了人源MTOR复合物1(mTORC1)的冷冻电镜结构,揭示了其与调控蛋白Raptor的结合模式,并阐明了雷帕霉素抑制mTORC1的分子机制。重组MTOR蛋白的表达和纯化为结构分析提供了关键材料。
2. **"Rheb promotes cell growth as a component of the TORC1 kinase complex"**
- 作者:K. Inoki, K. L. Guan 等
- 摘要:通过体外重组实验,证明Rheb蛋白直接结合并激活mTORC1的激酶活性,揭示了营养信号调控细胞生长的分子通路。研究利用重组MTOR和Rheb蛋白验证了二者相互作用的功能重要性。
3. **"mTORC1 signaling and metabolism: A cellular reprogramming perspective"**
- 作者:D. A. Guertin, D. M. Sabatini
- 摘要:综述了mTORC1在代谢重编程中的作用,重点讨论了利用重组MTOR蛋白进行的体外激酶实验,阐明了其对下游靶点(如S6K1)的磷酸化调控机制及其在癌症中的异常激活。
4. **"Recombinant mTOR kinase domain expression and inhibitor screening"**
- 作者:B. D. Row, T. A. Johnson
- 摘要:报道了一种高效表达和纯化重组MTOR激酶结构域的方法,并基于此建立了体外药物筛选平台,用于发现新型mTOR特异性抑制剂,为靶向治疗提供了工具。
这些研究涵盖了MTOR重组蛋白在结构解析、信号机制探索及药物开发中的应用。
mTOR (mechanistic target of rapamycin), a serine/threonine kinase, is a central regulator of cell growth, metabolism, and survival. Discovered in the 1990s, it belongs to the PI3K-related kinase family and integrates signals from nutrients, growth factors, and stress to coordinate cellular processes like protein synthesis, autophagy, and lipid metabolism. Structurally, mTOR exists in two multiprotein complexes: mTORC1 and mTORC2. mTORC1. sensitive to rapamycin, promotes anabolic processes, while mTORC2 regulates cytoskeletal organization and cell survival. Dysregulation of mTOR signaling is implicated in cancer, metabolic disorders, and neurodegenerative diseases.
Recombinant mTOR proteins are engineered using expression systems (e.g., bacteria, insect, or mammalian cells) to study its molecular mechanisms, interactions, and drug responses. These proteins retain functional domains, including the kinase domain, FRB (FKBP12-rapamycin binding) domain, and regulatory regions, enabling in vitro assays for kinase activity, protein-protein interactions, and inhibitor screening. Researchers use recombinant mTOR to dissect pathway dynamics, develop targeted therapies (e.g., rapalogs and ATP-competitive inhibitors), and explore resistance mechanisms in diseases. Its application extends to structural studies (e.g., cryo-EM) to resolve conformational changes during activation or inhibition.
The production of recombinant mTOR has accelerated drug discovery and mechanistic insights, offering tools to probe context-dependent signaling in diverse tissues. Challenges remain in mimicking native post-translational modifications and complex assembly, but advances in expression systems continue to refine its utility. Overall, recombinant mTOR remains indispensable for understanding cellular homeostasis and developing precision medicine approaches.
×