纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | rpoS |
Uniprot No | P13445 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-330aa |
氨基酸序列 | MSQNTLKVHDLNEDAEFDENGVEVFDEKALVEQEPSDNDLAEEELLSQGATQRVLDATQLYLGEIGYSPLLTAEEEVYFARRALRGDVASRRRMIESNLRLVVKIARRYGNRGLALLDLIEEGNLGLIRAVEKFDPERGFRFSTYATWWIRQTIERAIMNQTRTIRLPIHIVKELNVYLRTARELSHKLDHEPSAEEIAEQLDKPVDDVSRMLRLNERITSVDTPLGGDSEKALLDILADEKENGPEDTTQDDDMKQSIVKWLFELNAKQREVLARRFGLLGYEAATLEDVGREIGLTRERVRQIQVEGLRRLREILQTQGLNIEALFRE |
预测分子量 | 38.1 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于rpoS重组蛋白研究的示例参考文献(注:文献信息为示例性模拟内容,实际引用请核实原文):
1. **《Cloning and functional characterization of recombinant RpoS protein in Escherichia coli》**
- 作者:M. Smith et al. (2005)
- 摘要:报道了通过基因重组技术在大肠杆菌中高效表达并纯化RpoS蛋白,验证其作为σ^38因子在氧化应激条件下调控靶基因启动子活性的功能。
2. **《Role of RpoS in biofilm formation: Purification and interaction analysis of recombinant σ^38》**
- 作者:J. Lee & T. Tanaka (2010)
- 摘要:利用重组RpoS蛋白研究其与RNA聚合酶核心酶的相互作用,发现其通过调控生物膜相关基因(如csgD)影响细菌生物膜形成和渗透胁迫耐受性。
3. **《Structural insights into RpoS-mediated stress response in Gram-negative bacteria》**
- 作者:R. Müller & H. Schneider (2018)
- 摘要:通过X射线晶体学解析重组RpoS蛋白的三维结构,揭示其结构域2.5区域在启动子识别中的关键作用,并阐明其与RssB蛋白酶互作的分子机制。
提示:实际研究中建议通过PubMed或Web of Science以关键词"rpoS recombinant protein"、"σ^38 expression"或"rpoS purification"检索最新文献,并关注《Journal of Bacteriology》《Molecular Microbiology》等微生物学期刊。
**Background of RpoS Recombinant Protein**
The *rpoS* gene encodes the sigma factor σS (RpoS), a master regulator of stress response in *Escherichia coli* and related bacteria. RpoS governs the transcription of over 100 genes involved in survival during stationary phase, oxidative stress, osmotic shock, nutrient limitation, and DNA damage. It plays a critical role in bacterial adaptation to harsh environments, biofilm formation, and virulence in pathogens. Due to its central role in stress resistance, RpoS is closely linked to bacterial persistence, antibiotic tolerance, and industrial fermentation robustness.
Recombinant RpoS protein is produced by cloning the *rpoS* gene into expression vectors, followed by overexpression in bacterial hosts like *E. coli*. Purification typically involves affinity chromatography (e.g., His-tag systems) and refolding steps if the protein forms inclusion bodies. The recombinant form allows detailed biochemical studies, such as protein-DNA interaction assays, to decipher RpoS-dependent promoter binding and regulatory mechanisms.
Research on RpoS recombinant protein has applications in understanding microbial stress adaptation, improving vaccine production (by modulating stress pathways in expression hosts), and developing anti-biofilm agents. Challenges include maintaining protein stability, as RpoS is prone to proteolytic degradation *in vivo*, and reconciling *in vitro* findings with complex *in vivo* regulatory networks involving post-transcriptional modifications and interactions with other sigma factors.
Overall, RpoS recombinant protein serves as a vital tool for exploring bacterial survival strategies and biotechnological innovations.
×