纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | PCr |
Uniprot No | Q6P9F0 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-684aa |
氨基酸序列 | MNPPAAFLAGRQNIGSEVEISTIEKQRKELQLLIGELKDRDKELNDMVAVHQQQLLSWEEDRQKVLTLEERCSKLEGELHKRTEIIRSLTKKVKALESNQMECQTALQKTQLQLQEMAQKATHSSLLSEDLEARNETLSNTLVELSAQVGQLQAREQALTTMIKLKDKDIIEAVNHIADCSGKFKMLEHALRDAKMAETCIVKEKQDYKQKLKALKIEVNKLKEDLNEKTTENNEQREEIIRLKQEKSCLHDELLFTVEREKRKDELLNIAKSKQERTNSELHNLRQIYVKQQSDLQFLNFNVENSQELIQMYDSKMEESKALDSSRDMCLSDLENNHPKVDIKREKNQKSLFKDQKFEAMLVQQNRSDKSSCDECKEKKQQIDTVFGEKSVITLSSIFTKDLVEKHNLPWSLGGKTQIEPENKITLCKIHTKSPKCHGTGVQNEGKQPSETPTLSDEKQWHDVSVYLGLTNCPSSKHPEKLDVECQDQMERSEISCCQKNEACLGESGMCDSKCCHPSNFIIEAPGHMSDVEWMSIFKPSKMQRIVRLKSGCTCSESICGTQHDSPASELIAIQDSHSLGSSKSALREDETESSSNKKNSPTSLLIYKDAPAFNEKASIVLPSQDDFSPTSKLQRLLAESRQMVTDLELSTLLPISHENLTGSATNKSEVPEESAQKNTFVSY |
预测分子量 | 77,7 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于PCR技术在重组蛋白制备中的应用及相关研究的参考文献示例(注:文献为示例性构造,非真实存在):
1. **"Enhancing Recombinant Protein Expression via Optimized PCR Cloning Strategies"**
*作者:A. Smith, B. Lee (2020)*
**摘要**:探讨PCR引物设计及模板优化策略,以提高目标基因克隆效率,促进大肠杆菌系统中重组蛋白的高效表达与可溶性纯化。
2. **"High-Yield Production of Phosphocreatine Kinase in Yeast Using PCR-Driven Gene Synthesis"**
*作者:C. Müller et al. (2019)*
**摘要**:通过PCR介导的基因合成与酵母表达系统结合,实现磷酸肌酸激酶(PCrK)的高效表达,验证其酶活性及在能量代谢研究中的应用潜力。
3. **"CRISPR-Cas9 and PCR Assembly for Modular Recombinant Protein Engineering"**
*作者:T. Chen, R. Park (2021)*
**摘要**:结合CRISPR-Cas9基因编辑与重叠PCR技术,开发模块化重组蛋白构建方法,提升复杂蛋白结构(如融合蛋白)的组装效率与功能多样性。
4. **"A Review: PCR-Based Mutagenesis in Directed Evolution of Industrial Enzymes"**
*作者:K. Johnson et al. (2018)*
**摘要**:综述PCR技术在定向进化中的应用,包括易错PCR和定点突变,优化工业酶类重组蛋白的热稳定性及催化效率。
---
**注**:以上文献为示例,实际引用时需检索真实数据库(如PubMed、Web of Science)获取准确信息。若需具体领域文献,建议补充关键词(如“磷酸肌酸重组蛋白”或“PCR克隆技术”)。
Recombinant protein technology has revolutionized biomedical research and therapeutic development since its emergence in the 1970s. By integrating DNA from different sources into host organisms, scientists can produce customized proteins with precise functions. This approach overcame historical limitations in isolating natural proteins, which were often scarce, unstable, or contaminated. The foundation lies in molecular cloning techniques – restriction enzymes cut target genes, vectors carry them into host cells (typically E. coli, yeast, or mammalian cells), and expression systems translate these genes into functional proteins.
Key advancements like PCR amplification, codon optimization, and affinity tag systems dramatically improved yield and purity. Today, over 30% of FDA-approved biologics, including insulin, monoclonal antibodies, and vaccines, are recombinant proteins. Their applications span therapeutics (cancer immunotherapy, enzyme replacement therapies), diagnostics (antigen production for test kits), and industrial biocatalysis.
Challenges persist in producing complex eukaryotic proteins requiring post-translational modifications. While bacterial systems dominate for simplicity and cost-effectiveness, mammalian cell cultures (e.g., CHO cells) remain essential for glycosylated proteins. Recent innovations like CRISPR-edited cell lines, cell-free expression systems, and AI-driven protein folding predictions are addressing yield limitations and structural complexities.
The global recombinant protein market, valued at $2.4 billion in 2023. continues growing as personalized medicine demands increase. Ongoing research focuses on improving folding efficiency, reducing immunogenicity, and developing novel delivery systems. This technology remains central to addressing emerging health challenges, from targeted cancer therapies to rapid pandemic response through recombinant subunit vaccines.
×