纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | hmfB |
Uniprot No | P19267 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-69aa |
氨基酸序列 | MELPIAPIGRIIKDAGAERVSDDARITLAKILEEMGRDIASEAIKLARHAGRKTIKAEDIELAVRRFKK |
预测分子量 | 9.7 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于HmfB重组蛋白的示例性参考文献,基于相关领域研究的常见主题和结构整理而成:
---
1. **文献名称**: *"Cloning and Expression of Recombinant HmfB from Methanothermobacter thermautotrophicus: A Thermostable DNA-Binding Protein"*
**作者**: Smith, J. et al.
**摘要**: 本研究在大肠杆菌中成功克隆并表达了古菌Methanothermobacter thermautotrophicus的HmfB蛋白。纯化后的重组HmfB在体外表现出强DNA结合能力,并通过热稳定性实验证实其可增强DNA在高温下的保护作用,为古菌染色质耐热机制提供依据。
2. **文献名称**: *"Crystal Structure of Archaeal Histone Homolog HmfB Reveals Dimeric Assembly and DNA Interaction Motifs"*
**作者**: Tanaka, K. et al.
**摘要**: 通过X射线晶体学解析HmfB的三维结构,发现其以二聚体形式存在,并具有独特的螺旋-转角-螺旋基序。与真核组蛋白相比,HmfB通过电荷互补机制与DNA结合,提示其在古菌基因组压缩中的关键作用。
3. **文献名称**: *"Functional Characterization of Recombinant HmfB in DNA Condensation Under Extreme Conditions"*
**作者**: Lee, S. & Chen, W.
**摘要**: 利用重组HmfB进行体外DNA凝缩实验,发现其在高温和高盐环境下显著促进DNA超螺旋形成。通过原子力显微镜观察,揭示了HmfB通过多价相互作用调控染色质动态组装的过程。
4. **文献名称**: *"Comparative Study of HmfA and HmfB in Methanogenic Archaea: Implications for Chromatin Organization"*
**作者**: Zhang, Y. et al.
**摘要**: 对比分析HmfA和HmfB的重组蛋白功能,发现HmfB对A-T富集区DNA亲和力更高,且更倾向于形成高阶寡聚体。研究推测HmfB在古菌染色体分区中可能发挥特异性调控作用。
---
**注**:以上文献为示例性内容,实际研究中请通过学术数据库(如PubMed、Web of Science)检索具体文献。若需进一步协助定位真实文献,建议提供更详细的背景信息或研究关键词。
The hmfB gene encodes a histone-like protein originally identified in methanogenic archaea, such as *Methanothermus fervidus*. These organisms thrive in extreme environments, and their chromatin organization relies on small DNA-binding proteins like HmfB, which share functional similarities with eukaryotic histones. HmfB plays a critical role in compacting and stabilizing genomic DNA, regulating transcription, and protecting genetic material under high-temperature or other stress conditions. Its structure typically includes conserved domains for DNA interaction, enabling it to bend or wrap DNA into nucleosome-like architectures.
Recombinant HmfB protein is produced via heterologous expression systems, such as *E. coli*, to study its biochemical and biophysical properties. This approach allows large-scale purification for structural analyses (e.g., X-ray crystallography, NMR) and functional assays. Researchers are particularly interested in HmfB’s thermostability and DNA-binding mechanisms, which provide insights into archaeal chromatin dynamics and evolutionary links to eukaryotic histone-based systems.
Beyond basic science, recombinant HmfB has biotechnological potential. Its stability and DNA-packaging capabilities could inspire synthetic biology tools for gene delivery or nanostructure assembly. Additionally, studying HmfB may advance extremophile-derived enzyme engineering for industrial processes requiring high-temperature resilience. Despite progress, questions remain about its precise regulatory roles and adaptability across diverse archaeal species, driving ongoing research in this field.
×