纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | PALM |
Uniprot No | O75781 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-384aa |
氨基酸序列 | MEVLAAETTSQQERLQAIAEKRKRQAEIENKRRQLEDERRQLQHLKSKALRERWLLEGTPSSASEGDEDLRRQMQDDEQKTRLLEDSVSRLEKEIEVLERGDSAPATAKENAAAPSPVRAPAPSPAKEERKTEVVMNSQQTPVGTPKDKRVSNTPLRTVDGSPMMKAAMYSVEITVEKDKVTGETRVLSSTTLLPRQPLPLGIKVYEDETKVVHAVDGTAENGIHPLSSSEVDELIHKADEVTLSEAGSTAGAAETRGAVEGAARTTPSRREITGVQAQPGEATSGPPGIQPGQEPPVTMIFMGYQNVEDEAETKKVLGLQDTITAELVVIEDAAEPKEPAPPNGSAAEPPTEAASREENQAGPEATTSDPQDLDMKKHRCKCC |
预测分子量 | 45.7kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于PALM(光激活定位显微镜)技术与重组蛋白结合的3篇示例参考文献(注:文献为虚构示例,仅作格式参考):
---
1. **文献名称**:*Super-resolution imaging of recombinant fluorescent proteins in live cells using PALM*
**作者**:Betzig, E., et al.
**摘要**:本研究利用PALM技术对活细胞中表达的重组荧光蛋白(如mEos2)进行超分辨率成像,揭示了蛋白质在亚细胞结构中的纳米级动态分布,验证了PALM在重组蛋白标记与定位研究中的高精度优势。
2. **文献名称**:*Single-molecule tracking of recombinant membrane proteins via PALM*
**作者**:Manley, S., et al.
**摘要**:通过将重组表达的膜蛋白与光激活荧光标签融合,结合PALM技术实现单分子追踪,定量分析了膜蛋白在细胞表面的扩散模式及聚集行为,为受体信号转导机制提供新见解。
3. **文献名称**:*PALM-based visualization of recombinant enzyme complexes in bacteria*
**作者**:Shroff, H., et al.
**摘要**:在大肠杆菌中表达重组酶复合物,利用PALM超分辨率成像技术解析其空间组装过程,证实了酶复合物在代谢途径中的功能性纳米级组织结构。
---
**说明**:以上文献为示例,实际研究中建议通过PubMed或Google Scholar检索真实文献(关键词:**PALM microscopy + recombinant protein**)。若需具体文献,可提供更详细的研究方向(如特定蛋白或应用场景)。
**Background of PALM Recombinant Proteins**
PALM (Photoactivated Localization Microscopy) recombinant proteins are engineered biomolecules designed to enable super-resolution imaging and precise manipulation of cellular processes. These proteins typically incorporate light-sensitive domains or tags, such as photoactivatable fluorescent markers (e.g., PA-GFP) or optogenetic modules, allowing spatiotemporal control via specific wavelengths of light. Developed through recombinant DNA technology, they are expressed in host systems (e.g., *E. coli* or mammalian cells) and purified for experimental or therapeutic use.
The concept stems from advancements in optogenetics and super-resolution microscopy, where traditional imaging limits (~200 nm) are bypassed by selectively activating subsets of photoactivatable proteins. PALM-based recombinant proteins permit nanometer-scale resolution, making them pivotal in visualizing subcellular structures, tracking dynamic molecular interactions, and mapping protein localization in live cells.
Applications span neuroscience (e.g., mapping synaptic proteins), cancer biology (studying membrane receptor clustering), and drug delivery (light-triggered release systems). Their optogenetic variants enable remote control of signaling pathways, such as activating ion channels or transcription factors with light, offering non-invasive therapeutic potential.
Key advantages include minimal cellular disruption, high specificity, and real-time monitoring. Challenges remain in optimizing photoactivation efficiency, reducing phototoxicity, and enhancing biocompatibility for *in vivo* use. Future directions focus on multi-color imaging, improved probes for deeper tissue penetration, and integration with CRISPR or gene-editing tools for dynamic functional studies.
Overall, PALM recombinant proteins represent a transformative intersection of genetic engineering and optical technologies, driving innovation in both basic research and precision medicine.
×