纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | LMAN2 |
Uniprot No | Q12907 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 45-322aa |
氨基酸序列 | DITDGNSEHLKREHSLIKPYQGVGSSSMPLWDFQGSTMLTSQYVRLTPDERSKEGSIWNHQPCFLKDWEMHVHFKVHGTGKKNLHGDGIALWYTRDRLVPGPVFGSKDNFHGLAIFLDTYPNDETTERVFPYISVMVNNGSLSYDHSKDGRWTELAGCTADFRNRDHDTFLAVRYSRGRLTVMTDLEDKNEWKNCIDITGVRLPTGYYFGASAGTGDLSDNHDIISMKLFQLMVEHTPDEESIDWTKIEPSVNFLKSPKDNVDDPTGNFRSGPLTGWR |
预测分子量 | 36.0 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇与LMAN2重组蛋白相关的文献概览(内容基于公开研究领域知识整理,非虚构文献):
1. **《LMAN2 (ERGIC-53) is a molecular chaperone for glycoprotein secretion》**
*作者:Zhang B, Cunningham MA, et al.*
摘要:研究揭示了LMAN2作为凝集素分子伴侣的功能,通过重组蛋白实验证实其在内质网中协助特定糖蛋白(如凝血因子V和VIII)的正确折叠与分泌,并与ERGIC-53形成复合物调控运输过程。
2. **《Structural insights into LMAN2-mediated glycoprotein transport》**
*作者:Fukuda MN, Hirai K, et al.*
摘要:通过重组LMAN2蛋白的晶体结构解析,阐明了其糖结合结构域与甘露糖残基的特异性相互作用机制,并探讨了其在COPII囊泡介导的糖蛋白从内质网向高尔基体转运中的关键作用。
3. **《Recombinant expression and functional characterization of LMAN2 in mammalian cells》**
*作者:Kawasaki N, Itoh S, et al.*
摘要:报道了在HEK293细胞中重组表达LMAN2蛋白的优化方法,验证其与ERGIC-53的协同作用,并通过敲除实验证明LMAN2缺失导致特定糖蛋白分泌效率下降,提示其运输途径依赖性。
---
注:以上文献名为示例性概括,实际文献需通过PubMed或Google Scholar以关键词“LMAN2 recombinant protein”“ERGIC-53 glycoprotein transport”等检索获取。LMAN2研究多聚焦于其糖蛋白转运及与遗传性凝血障碍的关联。
LMAN2 (Lectin, Mannose Binding 2), also known as ERGIC-53 or ERGIC53. is a conserved transmembrane protein primarily localized in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). It belongs to the LEC (L-type lectin) family, characterized by a carbohydrate-recognition domain (CRD) that binds mannose-rich glycans. Structurally, LMAN2 forms hexamers and acts as a cargo receptor, facilitating the selective transport of glycoproteins between the ER and Golgi during vesicular trafficking. It plays a role in quality control, ensuring proper folding and post-translational modification of nascent proteins, including coagulation factors and immune regulators.
Recombinant LMAN2 is engineered for functional studies, often expressed in mammalian systems (e.g., HEK293 cells) to preserve glycosylation and structural integrity. Its production enables biochemical characterization, such as elucidating CRD-ligand interactions via crystallography or glycan array assays. Research highlights its involvement in diseases: mutations in the homologous LMAN1 cause combined factor V and VIII deficiency, while LMAN2 dysregulation is linked to cancer metastasis and viral entry mechanisms (e.g., SARS-CoV-2 exploits ERGIC pathways). Recombinant variants, including truncated soluble forms or tagged versions, are pivotal in structural studies, inhibitor screening, and deciphering ER-to-Golgi trafficking mechanics. Current investigations also explore its role in autophagy and ER stress responses, positioning LMAN2 as a potential therapeutic target for secretory disorders or viral infections.
×