首页 / 产品 / 蛋白 / 细胞因子、趋化因子与生长因子
纯度 | >95%SDS-PAGE. |
种属 | Human |
靶点 | IL-18 |
Uniprot No | Q14116 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 37-193aa |
氨基酸序列 | MYFGKLESKLSVIRNLNDQVLFIDQGNRPLFEDMTDSDCRDNAPRTIFII SMYKDSQPRGMAVTISVKCEKISTLSCENKIISFKEMNPPDNIKDTKSDI IFFQRSVPGHDNKMQFESSSYEGYFLACEKERDLFKLILKKEDELGDRSI MFTVQNED |
预测分子量 | 19 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4条关于IL-18重组蛋白的参考文献及其摘要概括:
---
1. **文献名称**:*Interleukin-18: a mediator of inflammation and autoimmunity*
**作者**:Fabrizi, F., et al.
**摘要**:该研究探讨了IL-18在炎症和自身免疫疾病中的作用,发现重组IL-18在实验模型中能显著增强Th1型免疫反应,并与IFN-γ协同促进炎症因子的释放,提示其在自身免疫性疾病(如类风湿性关节炎)中的潜在病理机制。
2. **文献名称**:*Recombinant IL-18 enhances the cytotoxic activity of natural killer cells in vitro*
**作者**:Takeda, K., et al.
**摘要**:通过体外实验验证了重组IL-18蛋白对自然杀伤(NK)细胞活性的调控作用,发现IL-18可通过激活NF-κB通路显著增强NK细胞的细胞毒性,为癌症免疫治疗提供了实验依据。
3. **文献名称**:*Expression and purification of bioactive recombinant human IL-18 in E. coli*
**作者**:Lee, J.K., et al.
**摘要**:报道了一种高效的大肠杆菌表达系统制备重组人IL-18蛋白的方法,通过优化密码子使用和纯化步骤,获得了高纯度、具有生物活性的IL-18.为后续临床前研究奠定基础。
4. **文献名称**:*IL-18 as a therapeutic target in a murine model of metastatic cancer*
**作者**:Robertson, M.J., et al.
**摘要**:在小鼠转移性肿瘤模型中,重组IL-18联合PD-1抑制剂显著抑制肿瘤生长,并延长生存期。研究表明IL-18通过激活CD8+ T细胞和降低Treg细胞抑制性,增强抗肿瘤免疫应答。
---
以上文献涵盖了IL-18重组蛋白的病理机制、免疫调控、制备方法及治疗应用等领域。如需具体期刊信息或发表年份,可进一步补充。
Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the interleukin-1 (IL-1) family, was initially identified as an interferon-gamma (IFN-γ)-inducing factor. It is synthesized as an inactive 24 kDa precursor (pro-IL-18) primarily by macrophages, dendritic cells, and epithelial cells, requiring proteolytic cleavage by caspase-1 or other proteases (e.g., caspase-4/5/11) to release its bioactive 18 kDa mature form. Structurally, IL-18 shares homology with IL-1β, adopting a β-trefoil fold that binds to its heterodimeric receptor complex, IL-18Rα and IL-18Rβ, activating downstream NF-κB and MAPK signaling pathways.
Functionally, IL-18 drives Th1-type immune responses by synergizing with IL-12 to enhance IFN-γ production in T cells and natural killer (NK) cells. However, its role extends beyond inflammation: in the absence of IL-12. IL-18 can promote Th2 responses, regulatory T cell activity, or even paradoxical immunosuppressive effects depending on the microenvironment. This duality underscores its involvement in diverse pathologies, including autoimmune diseases, metabolic disorders, and cancer, where it may either exacerbate inflammation or support immune evasion.
Recombinant IL-18 protein, produced via bacterial (e.g., *E. coli*) or mammalian expression systems, enables mechanistic studies and therapeutic exploration. Bacterial systems yield non-glycosylated but bioactive protein, while mammalian systems (e.g., HEK293 cells) generate glycosylated forms closer to native human IL-18. High-purity recombinant IL-18 is critical for *in vitro* assays (e.g., lymphocyte activation) and *in vivo* models to dissect its immunoregulatory networks. Clinically, recombinant IL-18 has been explored in cancer immunotherapy to boost NK/T cell cytotoxicity, though challenges persist due to its context-dependent effects and potential toxicity. Conversely, IL-18-binding protein (IL-18BP), a natural antagonist, is being investigated to counteract excessive IL-18 in inflammatory diseases. Ongoing research aims to harness IL-18's pleiotropic biology for targeted therapies while mitigating adverse outcomes.
×